Learning generalizable insertion skills in a data-efficient manner has long been a challenge in the robot learning community. While the current state-of-the-art methods with reinforcement learning (RL) show promising performance in acquiring manipulation skills, the algorithms are data-hungry and hard to generalize. To overcome the issues, in this paper we present Prim-LAfD, a simple yet effective framework to learn and adapt primitive-based insertion skills from demonstrations. Prim-LAfD utilizes black-box function optimization to learn and adapt the primitive parameters leveraging prior experiences. Human demonstrations are modeled as dense rewards guiding parameter learning. We validate the effectiveness of the proposed method on eight peg-hole and connector-socket insertion tasks. The experimental results show that our proposed framework takes less than one hour to acquire the insertion skills and as few as fifteen minutes to adapt to an unseen insertion task on a physical robot.
translated by 谷歌翻译
近年来,随着空间航天器实体的大规模部署以及卫星在板载功能的增加,在过度网络动态的情况下,与TCP/IP相比,出现了比TCP/IP更强大的通信协议。 DTN节点缓冲区管理仍然是一个活跃的研究领域,因为DTN核心协议的当前实现仍然依赖于以下假设:在不同的网络节点中始终有足够的内存来存储和正向捆绑包。此外,经典排队理论不适用于DTN节点缓冲区的动态管理。因此,本文提出了一种集中式方法,以基于高级强化学习(RL)策略优势行动者 - 批评者(A2C)自动管理低地球(LEO)卫星星座中的认知DTN节点。该方法旨在探索培训地球同步地球轨道智能代理,以管理Leo卫星星座中的所有DTN节点。 A2C代理的目的是在考虑节点内存利用率的同时最大化交付成功率并最大程度地减少网络资源消耗成本。智能代理可以根据束优先级动态调整无线电数据速率并执行下降操作。为了衡量在LEO卫星星座场景中将A2C技术应用于DTN节点管理问题的有效性,本文将受过训练的智能代理策略与其他两种非RL政策进行了比较,包括随机和标准政策。实验表明,A2C策略平衡了交付成功率和成本,并提供了最高的奖励和最低的节点存储器利用率。
translated by 谷歌翻译
操纵可变形的线性对象(DLOS)在有障碍的受约束环境中实现所需的形状是一项有意义但具有挑战性的任务。对于这项高度约束的任务是必要的;但是,由于规划人员的可变形性质,计划人员需要的准确模型很难获得,并且不可避免的建模错误会显着影响计划结果,如果机器人只是以开环的方式执行计划的路径,则可能导致任务失败。在本文中,我们提出了一个粗到精细的框架,以结合全球计划和局部控制,以进行双臂操纵DLO,能够精确实现所需的配置并避免DLO,机器人和障碍物之间的潜在碰撞。具体而言,全球规划师是指一个简单而有效的DLO能量模型,并计算出一条粗略的途径,以确保任务的可行性。然后,本地控制器遵循该路径作为指导,并通过闭环反馈进一步塑造它,以补偿计划错误并保证任务的准确性。仿真和现实世界实验都表明,我们的框架可以在使用不精确的DLO模型的受约束环境中稳健地实现所需的DLO配置。仅通过计划或控制就无法可靠地实现。
translated by 谷歌翻译
从单眼图像中学习的自我监督深度学习通常依赖于暂时相邻图像帧之间的2D像素光度关系。但是,他们既没有完全利用3D点的几何对应关系,也没有有效地应对闭塞或照明不一致引起的光度扭曲中的歧义。为了解决这些问题,这项工作提出了密度量构建网络(DEVNET),这是一种新型的自我监管的单眼深度学习框架,可以考虑3D空间信息,并利用相邻的相机flustums中的更强的几何约束。我们的DEVNET不是直接从单个图像中回归像素值,而是将摄像头划分为多个平行的平面,并预测每个平面上的点闭塞概率密度。最终的深度图是通过沿相应射线集成密度来生成的。在训练过程中,引入了新颖的正则化策略和损失功能,以减轻光度歧义和过度拟合。如果没有明显放大的模型参数的大小或运行时间,DEVNET在Kitti-2015室外数据集和NYU-V2室内数据集上均优于几个代表性基准。特别是,在深度估计的任务中,在Kitti-2015和NYU-V2上,DEVNET均减少了4%的根平方。代码可在https://github.com/gitkaichenzhou/devnet上找到。
translated by 谷歌翻译
近年来,大肠癌已成为危害人类健康最重要的疾病之一。深度学习方法对于结直肠组织病理学图像的分类越来越重要。但是,现有方法更多地集中在使用计算机而不是人类计算机交互的端到端自动分类。在本文中,我们提出了一个IL-MCAM框架。它基于注意机制和互动学习。提出的IL-MCAM框架包括两个阶段:自动学习(AL)和交互性学习(IL)。在AL阶段,使用包含三种不同注意机制通道和卷积神经网络的多通道注意机制模型用于提取多通道特征进行分类。在IL阶段,提出的IL-MCAM框架不断地将错误分类的图像添加到交互式方法中,从而提高了MCAM模型的分类能力。我们对数据集进行了比较实验,并在HE-NCT-CRC-100K数据集上进行了扩展实验,以验证拟议的IL-MCAM框架的性能,分别达到98.98%和99.77%的分类精度。此外,我们进行了消融实验和互换性实验,以验证三个通道的能力和互换性。实验结果表明,所提出的IL-MCAM框架在结直肠组织病理学图像分类任务中具有出色的性能。
translated by 谷歌翻译
背景和目的:胃癌已经成为全球第五次常见的癌症,早期检测胃癌对于拯救生命至关重要。胃癌的组织病理学检查是诊断胃癌的金标准。然而,计算机辅助诊断技术是挑战,以评估由于公开胃组织病理学图像数据集的稀缺而评估。方法:在本文中,公布了一种贵族公共胃组织病理学子尺寸图像数据库(GashissdB)以识别分类器的性能。具体地,包括两种类型的数据:正常和异常,总共245,196个组织案例图像。为了证明图像分类领域的不同时期的方法在GashissdB上具有差异,我们选择各种分类器进行评估。选择七种古典机器学习分类器,三个卷积神经网络分类器和新颖的基于变压器的分类器进行测试,用于测试图像分类任务。结果:本研究采用传统机器学习和深入学习方法进行了广泛的实验,以证明不同时期的方法对GashissdB具有差异。传统的机器学习实现了86.08%的最佳精度率,最低仅为41.12%。深度学习的最佳准确性达到96.47%,最低为86.21%。分类器的精度率显着变化。结论:据我们所知,它是第一个公开的胃癌组织病理学数据集,包含大量的弱监督学习的图像。我们认为Gashissdb可以吸引研究人员来探索胃癌自动诊断的新算法,这可以帮助医生和临床环境中的患者。
translated by 谷歌翻译
宫颈癌是女性中一种非常常见和致命的癌症类型。细胞病理学图像通常用于筛选这种癌症。鉴于在手动筛查期间可能发生许多错误,已经开发了一种基于深度学习的计算机辅助诊断系统。深度学习方法需要输入图像的固定维度,但临床医学图像的尺寸不一致。图像的纵横比在直接调整它们的同时受到影响。临床上,细胞病理学图像内的细胞的纵横比为医生诊断癌症提供重要信息。因此,很难直接调整大小。然而,许多现有研究直接调整了图像的大小,并获得了高度稳健的分类结果。为了确定合理的解释,我们进行了一系列比较实验。首先,预处理SipakMed数据集的原始数据以获得标准和缩放数据集。然后,将数据集调整为224 x 224像素。最后,22种深度学习模型用于分类标准和缩放数据集。该研究的结果表明,深度学习模型对宫颈细胞病理学图像中细胞的纵横比变化是鲁棒的。此结论也通过Herlev DataSet验证。
translated by 谷歌翻译
现有的胃癌诊断深层学习方法,常用卷积神经网络。最近,视觉变压器由于其性能和效率而引起了极大的关注,但其应用主要在计算机视野领域。本文提出了一种用于Gashis变压器的多尺度视觉变压器模型,用于胃组织病理学图像分类(GHIC),其使微观胃图像自动分类为异常和正常情况。 GASHIS-COMPURANCER模型由两个关键模块组成:全球信息模块和局部信息模块有效提取组织病理特征。在我们的实验中,具有280个异常和正常图像的公共血毒素和曙红(H&E)染色的胃组织病理学数据集分为训练,验证和测试组,比率为1:1:2胃组织病理学数据集测试组精度,召回,F1分数和准确性分别为98.0%,100.0%,96.0%和98.0%。此外,进行了关键的研究以评估Gashis变压器的稳健性,其中添加了10个不同的噪声,包括四种对抗性攻击和六种传统图像噪声。此外,执行临床上有意义的研究以测试Gashis变压器的胃肠癌鉴定性能,具有620个异常图像,精度达到96.8%。最后,进行比较研究以测试在淋巴瘤图像数据集和乳腺癌数据集上的H&E和免疫组织化学染色图像的概括性,产生可比的F1分数(85.6%和82.8%)和精度(83.9%和89.4%) , 分别。总之,Gashistransformer演示了高分类性能,并在GHIC任务中显示出其显着潜力。
translated by 谷歌翻译
Continuous formulations of trajectory planning problems have two main benefits. First, constraints are guaranteed to be satisfied at all times. Secondly, dynamic obstacles can be naturally considered with time. This paper introduces a novel B-spline based trajectory optimization method for multi-jointed robots that provides a continuous trajectory with guaranteed continuous constraints satisfaction. At the core of this method, B-spline basic operations, like addition, multiplication, and derivative, are rigorously defined and applied for problem formulation. B-spline unique characteristics, such as the convex hull and smooth curves properties, are utilized to reformulate the original continuous optimization problem into a finite-dimensional problem. Collision avoidance with static obstacles is achieved using the signed distance field, while that with dynamic obstacles is accomplished via constructing time-varying separating hyperplanes. Simulation results on various robots validate the effectiveness of the algorithm. In addition, this paper provides experimental validations with a 6-link FANUC robot avoiding static and moving obstacles.
translated by 谷歌翻译
合奏方法是将多种模型相结合以实现卓越性能的可靠方法。但是,关于集合方法在遥感对象检测方案中的应用的研究大多被忽略了。出现了两个问题。首先,遥感对象检测的一个独特特征是对象的定向边界框(OBB)和多个OBB的融合需要进一步的研究注意。其次,广泛使用的深度学习对象检测器为每个检测到的对象提供了一个分数作为置信度的指标,但是如何在集合方法中有效使用这些指标仍然是一个问题。试图解决这些问题,本文提出了与OBB兼容的合奏方法,并以学习的方式结合了检测结果。这种合奏方法有助于在挑战轨道\ textit {高分辨率光学图像中的细粒对象识别}中排名第一,该{\ textit {2021 Gaofen挑战在自动化高分辨率的地球观测图像}中均具有特征。 DOTA数据集和FAIR1M数据集的实验表明,分析了Obbstacking的性能以及Obbstacking的功能。
translated by 谷歌翻译