Despite excellent performance in image generation, Generative Adversarial Networks (GANs) are notorious for its requirements of enormous storage and intensive computation. As an awesome ''performance maker'', knowledge distillation is demonstrated to be particularly efficacious in exploring low-priced GANs. In this paper, we investigate the irreplaceability of teacher discriminator and present an inventive discriminator-cooperated distillation, abbreviated as DCD, towards refining better feature maps from the generator. In contrast to conventional pixel-to-pixel match methods in feature map distillation, our DCD utilizes teacher discriminator as a transformation to drive intermediate results of the student generator to be perceptually close to corresponding outputs of the teacher generator. Furthermore, in order to mitigate mode collapse in GAN compression, we construct a collaborative adversarial training paradigm where the teacher discriminator is from scratch established to co-train with student generator in company with our DCD. Our DCD shows superior results compared with existing GAN compression methods. For instance, after reducing over 40x MACs and 80x parameters of CycleGAN, we well decrease FID metric from 61.53 to 48.24 while the current SoTA method merely has 51.92. This work's source code has been made accessible at https://github.com/poopit/DCD-official.
translated by 谷歌翻译
Currently, most deep learning methods cannot solve the problem of scarcity of industrial product defect samples and significant differences in characteristics. This paper proposes an unsupervised defect detection algorithm based on a reconstruction network, which is realized using only a large number of easily obtained defect-free sample data. The network includes two parts: image reconstruction and surface defect area detection. The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure. Only a small number of normal samples are used for training so that the reconstruction network can be A defect-free reconstructed image is generated. A function combining structural loss and $\mathit{L}1$ loss is proposed as the loss function of the reconstruction network to solve the problem of poor detection of irregular texture surface defects. Further, the residual of the reconstructed image and the image to be tested is used as the possible region of the defect, and conventional image operations can realize the location of the fault. The unsupervised defect detection algorithm of the proposed reconstruction network is used on multiple defect image sample sets. Compared with other similar algorithms, the results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
translated by 谷歌翻译
This paper proposes a content relationship distillation (CRD) to tackle the over-parameterized generative adversarial networks (GANs) for the serviceability in cutting-edge devices. In contrast to traditional instance-level distillation, we design a novel GAN compression oriented knowledge by slicing the contents of teacher outputs into multiple fine-grained granularities, such as row/column strips (global information) and image patches (local information), modeling the relationships among them, such as pairwise distance and triplet-wise angle, and encouraging the student to capture these relationships within its output contents. Built upon our proposed content-level distillation, we also deploy an online teacher discriminator, which keeps updating when co-trained with the teacher generator and keeps freezing when co-trained with the student generator for better adversarial training. We perform extensive experiments on three benchmark datasets, the results of which show that our CRD reaches the most complexity reduction on GANs while obtaining the best performance in comparison with existing methods. For example, we reduce MACs of CycleGAN by around 40x and parameters by over 80x, meanwhile, 46.61 FIDs are obtained compared with these of 51.92 for the current state-of-the-art. Code of this project is available at https://github.com/TheKernelZ/CRD.
translated by 谷歌翻译
The unsupervised anomaly localization task faces the challenge of missing anomaly sample training, detecting multiple types of anomalies, and dealing with the proportion of the area of multiple anomalies. A separate teacher-student feature imitation network structure and a multi-scale processing strategy combining an image and feature pyramid are proposed to solve these problems. A network module importance search method based on gradient descent optimization is proposed to simplify the network structure. The experimental results show that the proposed algorithm performs better than the feature modeling anomaly localization method on the real industrial product detection dataset in the same period. The multi-scale strategy can effectively improve the effect compared with the benchmark method.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Due to the lack of depth information of images and poor detection accuracy in monocular 3D object detection, we proposed the instance depth for multi-scale monocular 3D object detection method. Firstly, to enhance the model's processing ability for different scale targets, a multi-scale perception module based on dilated convolution is designed, and the depth features containing multi-scale information are re-refined from both spatial and channel directions considering the inconsistency between feature maps of different scales. Firstly, we designed a multi-scale perception module based on dilated convolution to enhance the model's processing ability for different scale targets. The depth features containing multi-scale information are re-refined from spatial and channel directions considering the inconsistency between feature maps of different scales. Secondly, so as to make the model obtain better 3D perception, this paper proposed to use the instance depth information as an auxiliary learning task to enhance the spatial depth feature of the 3D target and use the sparse instance depth to supervise the auxiliary task. Finally, by verifying the proposed algorithm on the KITTI test set and evaluation set, the experimental results show that compared with the baseline method, the proposed method improves by 5.27\% in AP40 in the car category, effectively improving the detection performance of the monocular 3D object detection algorithm.
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
Aiming at the problem that the current video anomaly detection cannot fully use the temporal information and ignore the diversity of normal behavior, an anomaly detection method is proposed to integrate the spatiotemporal information of pedestrians. Based on the convolutional autoencoder, the input frame is compressed and restored through the encoder and decoder. Anomaly detection is realized according to the difference between the output frame and the true value. In order to strengthen the characteristic information connection between continuous video frames, the residual temporal shift module and the residual channel attention module are introduced to improve the modeling ability of the network on temporal information and channel information, respectively. Due to the excessive generalization of convolutional neural networks, in the memory enhancement modules, the hopping connections of each codec layer are added to limit autoencoders' ability to represent abnormal frames too vigorously and improve the anomaly detection accuracy of the network. In addition, the objective function is modified by a feature discretization loss, which effectively distinguishes different normal behavior patterns. The experimental results on the CUHK Avenue and ShanghaiTech datasets show that the proposed method is superior to the current mainstream video anomaly detection methods while meeting the real-time requirements.
translated by 谷歌翻译
Considerable unsupervised video object segmentation algorithms based on deep learning have the problem of substantive model parameters and computation, which significantly limits the application of the algorithm in practice. This paper proposes a video object segmentation network based on motion guidance, considerably reducing the number of model parameters and computation and improving the video object segmentation performance. The model comprises a dual-stream network, motion guidance module, and multi-scale progressive fusion module. Specifically, RGB images and optical flow estimation are fed into dual-stream network to extract object appearance features and motion features. Then, the motion guidance module extracts the semantic information from the motion features through local attention, which guides the appearance features to learn rich semantic information. Finally, the multi-scale progressive fusion module obtains the output features at each stage of the dual-stream network. It gradually integrates the deep features into the shallow ones yet improves the edge segmentation effect. In this paper, numerous evaluations are conducted on three standard datasets, and the experimental results prove the superior performance of the proposed method.
translated by 谷歌翻译
读取图像中文本的能力通常缺乏视觉和语言(V&L)模型。我们如何学习表现出强烈的场景文本理解(Stu)的V&L模型?在本文中,我们提出了Prestu,这是一种专门为场景文本理解而设计的简单预训练食谱。Prestu将简单的OCR感知预训练目标与带有现成的OCR信号的大型图像文本数据集结合在一起。我们从经验上证明了这一预训练目标对TextVQA,TextCaps,ST-VQA和Vizwiz-VQA的优越性。我们还研究了哪些因素会影响Stu性能,其中我们强调了在预训练期间图像分辨率和数据集量表的重要性。
translated by 谷歌翻译