使用计算笔记本(例如,Jupyter Notebook),数据科学家根据他们的先前经验和外部知识(如在线示例)合理化他们的探索性数据分析(EDA)。对于缺乏关于数据集或问题的具体了解的新手或数据科学家,有效地获得和理解外部信息对于执行EDA至关重要。本文介绍了eDassistant,一个jupyterlab扩展,支持EDA的原位搜索示例笔记本电脑和有用的API的推荐,由搜索结果的新颖交互式可视化供电。代码搜索和推荐是由最先进的机器学习模型启用的,培训在线收集的EDA笔记本电脑的大型语料库。进行用户学习,以调查埃迪卡斯特和数据科学家的当前实践(即,使用外部搜索引擎)。结果证明了埃迪斯坦特的有效性和有用性,与会者赞赏其对EDA的顺利和环境支持。我们还报告了有关代码推荐工具的几种设计意义。
translated by 谷歌翻译
模型压缩可以显着降低深度神经网络(DNN)模型的大小,以便在资源限制的移动和物联网设备上部署压缩后大型复杂的模型。但是,模型压缩通常将偏离的行为引入压缩模型:原始和压缩模型输出相同输入的不同预测结果。因此,警告开发人员至关重要,并帮助他们全面评估部署前的这种行为的可能后果。为此,我们提出了TriggerFinder,一种新颖,有效和有效的测试方法来自动识别输入以触发压缩模型中的偏离行为。给出一个作为种子的输入I,触发器采用迭代地应用一系列突变操作以改变I,直到得到的输入触发偏离的行为。但是,压缩模型通常隐藏其架构和梯度信息;没有这样的内部信息作为指导,它变得难以有效且有效地触发偏离的行为。为了解决这一挑战,我们提出了一种新颖的健身功能来确定更接近能够触发偏移预测的输入的突变输入。此外,TriggerFinder将该搜索问题模拟作为Markov链过程,并利用了Metropolis-Hasting算法来指导突变运算符的选择。我们在具有两个数据集的18个压缩模型上评估了TriggerFinder。实验结果表明,在某些情况下,基线在基线发生故障时,触发器可以成功找到所有种子输入的触发输入。至于效率,TriggerFinder为5.2x-115.8x,与基线一样快。此外,TriggerFinder要求找到一个触发输入的查询仅为51.8x-535.6x,作为基线。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
A noisy training set usually leads to the degradation of the generalization and robustness of neural networks. In this paper, we propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels. Specifically, we first present a Scalable Penalized Regression (SPR) method, to model the linear relation between network features and one-hot labels. In SPR, the clean data are identified by the zero mean-shift parameters solved in the regression model. We theoretically show that SPR can recover clean data under some conditions. Under general scenarios, the conditions may be no longer satisfied; and some noisy data are falsely selected as clean data. To solve this problem, we propose a data-adaptive method for Scalable Penalized Regression with Knockoff filters (Knockoffs-SPR), which is provable to control the False-Selection-Rate (FSR) in the selected clean data. To improve the efficiency, we further present a split algorithm that divides the whole training set into small pieces that can be solved in parallel to make the framework scalable to large datasets. While Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline, we further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data. Experimental results on several benchmark datasets and real-world noisy datasets show the effectiveness of our framework and validate the theoretical results of Knockoffs-SPR. Our code and pre-trained models will be released.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
Neural models with an encoder-decoder framework provide a feasible solution to Question Generation (QG). However, after analyzing the model vocabulary we find that current models (both RNN-based and pre-training based) have more than 23\% inflected forms. As a result, the encoder will generate separate embeddings for the inflected forms, leading to a waste of training data and parameters. Even worse, in decoding these models are vulnerable to irrelevant noise and they suffer from high computational costs. In this paper, we propose an approach to enhance the performance of QG by fusing word transformation. Firstly, we identify the inflected forms of words from the input of encoder, and replace them with the root words, letting the encoder pay more attention to the repetitive root words. Secondly, we propose to adapt QG as a combination of the following actions in the encode-decoder framework: generating a question word, copying a word from the source sequence or generating a word transformation type. Such extension can greatly decrease the size of predicted words in the decoder as well as noise. We apply our approach to a typical RNN-based model and \textsc{UniLM} to get the improved versions. We conduct extensive experiments on SQuAD and MS MARCO datasets. The experimental results show that the improved versions can significantly outperform the corresponding baselines in terms of BLEU, ROUGE-L and METEOR as well as time cost.
translated by 谷歌翻译