考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
有效理解动态发展的多种互动对于捕获社会系统中代理的潜在行为至关重要。通常要直接观察这些相互作用是一项挑战,因此对潜在相互作用进行建模对于实现复杂行为至关重要。动态神经关系推断(DNRI)的最新工作在每个步骤中都捕获了明确的互动相互作用。但是,在每个步骤中的预测都会导致嘈杂的相互作用,并且没有事后检查就缺乏内在的解释性。此外,它需要访问地面真理注释来分析难以获得的预测相互作用。本文介绍了Dider,发现了可解释的动态发展关系,这是一种具有内在解释性的通用端到端交互建模框架。 Dider通过将潜在相互作用预测的任务分解为亚相互作用预测和持续时间估计,发现了一个可解释的代理相互作用序列。通过在延长的时间持续时间内强加亚相互作用类型的一致性,提出的框架可以实现内在的解释性,而无需进行任何事后检查。我们在合成数据集和现实世界数据集上评估了Dider。实验结果表明,建模解剖和可解释的动态关系可改善轨迹预测任务的性能。
translated by 谷歌翻译
在高度互动的场景中进行运动预测是自主驾驶中的一个挑战性问题。在这种情况下,我们需要准确预测相互作用的代理的共同行为,以确保自动驾驶汽车的安全有效导航。最近,由于其在性能方面的优势和捕获轨迹分布中多模态的能力,目标条件方法引起了人们的关注。在这项工作中,我们研究了目标条件框架的联合轨迹预测问题。特别是,我们引入了一个有条件的基于AutoEncoder(CVAE)模型,以将不同的相互作用模式明确地编码到潜在空间中。但是,我们发现香草模型遭受后塌陷,无法根据需要诱导信息的潜在空间。为了解决这些问题,我们提出了一种新颖的方法,以避免KL消失并诱导具有伪标签的可解释的互动潜在空间。提出的伪标签使我们能够以灵活的方式将域知识纳入有关相互作用的知识。我们使用说明性玩具示例激励提出的方法。此外,我们通过定量和定性评估验证Waymo Open Motion数据集上的框架。
translated by 谷歌翻译
Many recent works on understanding deep learning try to quantify how much individual data instances influence the optimization and generalization of a model, either by analyzing the behavior of the model during training or by measuring the performance gap of the model when the instance is removed from the dataset. Such approaches reveal characteristics and importance of individual instances, which may provide useful information in diagnosing and improving deep learning. However, most of the existing works on data valuation require actual training of a model, which often demands high-computational cost. In this paper, we provide a training-free data valuation score, called complexity-gap score, which is a data-centric score to quantify the influence of individual instances in generalization of two-layer overparameterized neural networks. The proposed score can quantify irregularity of the instances and measure how much each data instance contributes in the total movement of the network parameters during training. We theoretically analyze and empirically demonstrate the effectiveness of the complexity-gap score in finding 'irregular or mislabeled' data instances, and also provide applications of the score in analyzing datasets and diagnosing training dynamics.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Efficient exploration strategy is one of essential issues in cooperative multi-agent reinforcement learning (MARL) algorithms requiring complex coordination. In this study, we introduce a new exploration method with the strangeness that can be easily incorporated into any centralized training and decentralized execution (CTDE)-based MARL algorithms. The strangeness refers to the degree of unfamiliarity of the observations that an agent visits. In order to give the observation strangeness a global perspective, it is also augmented with the the degree of unfamiliarity of the visited entire state. The exploration bonus is obtained from the strangeness and the proposed exploration method is not much affected by stochastic transitions commonly observed in MARL tasks. To prevent a high exploration bonus from making the MARL training insensitive to extrinsic rewards, we also propose a separate action-value function trained by both extrinsic reward and exploration bonus, on which a behavioral policy to generate transitions is designed based. It makes the CTDE-based MARL algorithms more stable when they are used with an exploration method. Through a comparative evaluation in didactic examples and the StarCraft Multi-Agent Challenge, we show that the proposed exploration method achieves significant performance improvement in the CTDE-based MARL algorithms.
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
Recognizing the surrounding environment at low latency is critical in autonomous driving. In real-time environment, surrounding environment changes when processing is over. Current detection models are incapable of dealing with changes in the environment that occur after processing. Streaming perception is proposed to assess the latency and accuracy of real-time video perception. However, additional problems arise in real-world applications due to limited hardware resources, high temperatures, and other factors. In this study, we develop a model that can reflect processing delays in real time and produce the most reasonable results. By incorporating the proposed feature queue and feature select module, the system gains the ability to forecast specific time steps without any additional computational costs. Our method is tested on the Argoverse-HD dataset. It achieves higher performance than the current state-of-the-art methods(2022.10) in various environments when delayed . The code is available at https://github.com/danjos95/DADE
translated by 谷歌翻译