过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
In the era of noisy intermediate scale quantum devices, variational quantum circuits (VQCs) are currently one of the main strategies for building quantum machine learning models. These models are made up of a quantum part and a classical part. The quantum part is given by a parametrization $U$, which, in general, is obtained from the product of different quantum gates. By its turn, the classical part corresponds to an optimizer that updates the parameters of $U$ in order to minimize a cost function $C$. However, despite the many applications of VQCs, there are still questions to be answered, such as for example: What is the best sequence of gates to be used? How to optimize their parameters? Which cost function to use? How the architecture of the quantum chips influences the final results? In this article, we focus on answering the last question. We will show that, in general, the cost function will tend to a typical average value the closer the parameterization used is from a $2$-design. Therefore, the closer this parameterization is to a $2$-design, the less the result of the quantum neural network model will depend on its parametrization. As a consequence, we can use the own architecture of the quantum chips to defined the VQC parametrization, avoiding the use of additional swap gates and thus diminishing the VQC depth and the associated errors.
translated by 谷歌翻译
热分析在不同的温度场景下提供了对电子芯片行为的更深入见解,并可以更快地设计探索。但是,使用FEM或CFD,在芯片上获得详细而准确的热曲线非常耗时。因此,迫切需要加快片上热溶液以解决各种系统方案。在本文中,我们提出了一个热机学习(ML)求解器,以加快芯片的热模拟。热ML-Solver是最近的新型方法CoAemlSim(可组合自动编码器的机器学习模拟器)的扩展,并对溶液算法进行了修改,以处理常数和分布式HTC。在不同情况下,针对商业求解器(例如ANSYS MAPDL)以及最新的ML基线UNET验证了所提出的方法,以证明其增强的准确性,可伸缩性和概括性。
translated by 谷歌翻译
本文介绍了一个基于计算机视觉的框架,该框架可以通过使用已安装的监视/CCTV摄像头来检测道路交通崩溃(RCT),并实时将其报告给紧急情况,并确切的事故发生的确切位置和时间。该框架由五个模块构建。我们从使用Yolo架构来检测车辆开始。第二个模块是使用MOSSE跟踪器对车辆的跟踪,然后第三个模块是一种基于碰撞估计的新方法来检测事故。然后是每辆车的第四个模块,我们检测到是否发生了基于暴力流动描述符(VIF)的车祸,然后是SVM分类器进行崩溃预测。最后,在最后阶段,如果发生车祸,系统将使用GPS模块向我们发送通知GSM模块的帮助。主要目的是通过更少的错误警报实现更高的准确性,并基于管道技术实施一个简单的系统。
translated by 谷歌翻译
背景:最近,在疫苗接种率相对较高的地区,已经报告了大量的每日CoVID-19例阳性病例。因此,助推器疫苗接种已成为必要。此外,尚未深入讨论由不同变体和相关因素引起的感染。具有较大的变异性和不同的共同因素,很难使用常规数学模型来预测Covid-19的发生率。方法:基于长期短期记忆的机器学习被应用于预测新每日阳性病例(DPC),严重病例,住院病例和死亡的时间序列。从以色列等疫苗接种率高的地区获得的数据与日本其他地区的当前数据混合在一起,以考虑疫苗接种的潜在影响。还考虑了症状感染提供的保护,从疫苗接种的人口效力以及病毒变异的减弱保护,比率和感染性的降低。为了代表公共行为的变化,分析还包括通过社交媒体进行的公共流动性和通过社交媒体的互动。研究结果:比较特拉维夫,以色列观察到的新DPC,表征疫苗接种效果的参数和免受感染的减弱保护; 5个月后第二剂量的疫苗接种效率和三角变体感染后两周后的第三剂量分别为0.24和0.95。使用有关疫苗接种效果的提取参数,复制了日本三个县的新病例。
translated by 谷歌翻译
类似于开放数据计划,数据科学作为社区,不仅启动了分享的举措,而且不仅可以分享整个管道,衍生物,文物等(开放数据科学)。但是,在如何促进分享,转换等方面存在的少数努力。此视觉纸张进一步逐步并提出Kek,这是一个不仅允许共享数据科学管道和共享数据科学管道的开放联合数据科学平台他们的(META)数据还提供了有效搜索的方法,并且在理想情况下,甚至允许以联合方式跨平台组合和定义管道。在这样做时,Kek解决了到目前为止忽视的忽视挑战实际上发现了语义相关的文物,可以组合以实现某个目标。
translated by 谷歌翻译
由于深度学习在许多人工智能应用中显示了革命性的性能,其升级的计算需求需要用于巨大并行性的硬件加速器和改进的吞吐量。光学神经网络(ONN)是下一代神经关键组成的有希望的候选者,由于其高并行,低延迟和低能量消耗。在这里,我们设计了一个硬件高效的光子子空间神经网络(PSNN)架构,其针对具有比具有可比任务性能的前一个ONN架构的光学元件使用,区域成本和能量消耗。此外,提供了一种硬件感知培训框架,以最小化所需的设备编程精度,减少芯片区域,并提高噪声鲁棒性。我们在实验上展示了我们的PSNN在蝴蝶式可编程硅光子集成电路上,并在实用的图像识别任务中显示其实用性。
translated by 谷歌翻译
为了其优势在GPU加速和更少依赖人类专家的优势,机器学习一直是解决放置和路由问题的新兴工具,作为现代芯片设计流程中的两个关键步骤。仍处于早期阶段,存在基本问题:可扩展性,奖励设计和端到端学习范式等,以实现端到端的放置学习,我们首先提出了一个由DeepPlace进行的联合学习方法进行放置宏观和标准电池,通过用基于梯度的优化方案的增强学习集成。为了进一步利用随后的路由任务进行展开,我们还通过加强学习开发联合学习方法来满足宏放置和路由,称为DeepPR。我们(钢筋)学习范例的一个关键设计涉及多视图嵌入模型来编码输入宏的全局图级别和本地节点级别信息。此外,设计随机网络蒸馏以鼓励探索。公共芯片设计基准的实验表明,我们的方法可以有效地从经验中学习,并在几小时内为邮政标准单元放置提供中间位置进行培训。
translated by 谷歌翻译
Automl系统通过对有效的数据转换和学习者进行搜索以及为每个学习者进行超参数优化,从而自动构建机器学习模型。许多汽车系统使用元学习来指导搜索最佳管道。在这项工作中,我们提出了一个名为KGPIP的新颖的元学习系统,(1)通过通过程序分析挖掘数千个脚本来构建数据集和相应管道数据库,(2)使用数据集嵌入式来在数据库中找到基于数据库的类似数据集(3)在其内容上而不是基于元数据的功能上,模型Automl Pipeline创建作为图形生成问题,以简洁地表征单个数据集看到的各种管道。 KGPIP的元学习是汽车系统的子组件。我们通过将KGPIP与两个自动系统集成在一起来证明这一点。我们使用126个数据集的全面评估,包括最先进的系统使用的数据集,这表明KGPIP明显优于这些系统。
translated by 谷歌翻译
由于其实现的实际加速,过滤器修剪已广泛用于神经网络压缩。迄今为止,大多数现有滤波器修剪工作探索过滤器通过使用通道内信息的重要性。在本文中,从频道间透视开始,我们建议使用信道独立性进行有效的滤波器修剪,该指标测量不同特征映射之间的相关性。较少独立的特征映射被解释为包含较少有用的信息$ / $知识,因此可以修剪其相应的滤波器而不会影响模型容量。我们在过滤器修剪的背景下系统地调查了渠道独立性的量化度量,测量方案和敏感性$ / $可靠性。我们对各种数据集不同模型的评估结果显示了我们方法的卓越性能。值得注意的是,在CIFAR-10数据集上,我们的解决方案可以分别为基线Resnet-56和Resnet-110型号的0.75 \%$ 0.94 \%$ 0.94 \%。模型大小和拖鞋减少了42.8 \%$和$ 47.4 \%$(for Resnet-56)和48.3 \%$ 48.3 \%$ 52.1 \%$(for resnet-110)。在ImageNet DataSet上,我们的方法可以分别达到40.8 \%$ 44.8 \%$ 74.8 \%$ 0.15 \%$ 0.15 \%$ 0.15美元的准确性。该代码可在https://github.com/eclipsess/chip_neurivs2021上获得。
translated by 谷歌翻译