Nucleolar organizer regions (NORs) are parts of the DNA that are involved in RNA transcription. Due to the silver affinity of associated proteins, argyrophilic NORs (AgNORs) can be visualized using silver-based staining. The average number of AgNORs per nucleus has been shown to be a prognostic factor for predicting the outcome of many tumors. Since manual detection of AgNORs is laborious, automation is of high interest. We present a deep learning-based pipeline for automatically determining the AgNOR-score from histopathological sections. An additional annotation experiment was conducted with six pathologists to provide an independent performance evaluation of our approach. Across all raters and images, we found a mean squared error of 0.054 between the AgNOR- scores of the experts and those of the model, indicating that our approach offers performance comparable to humans.
translated by 谷歌翻译
Mitotic activity is key for the assessment of malignancy in many tumors. Moreover, it has been demonstrated that the proportion of abnormal mitosis to normal mitosis is of prognostic significance. Atypical mitotic figures (MF) can be identified morphologically as having segregation abnormalities of the chromatids. In this work, we perform, for the first time, automatic subtyping of mitotic figures into normal and atypical categories according to characteristic morphological appearances of the different phases of mitosis. Using the publicly available MIDOG21 and TUPAC16 breast cancer mitosis datasets, two experts blindly subtyped mitotic figures into five morphological categories. Further, we set up a state-of-the-art object detection pipeline extending the anchor-free FCOS approach with a gated hierarchical subclassification branch. Our labeling experiment indicated that subtyping of mitotic figures is a challenging task and prone to inter-rater disagreement, which we found in 24.89% of MF. Using the more diverse MIDOG21 dataset for training and TUPAC16 for testing, we reached a mean overall average precision score of 0.552, a ROC AUC score of 0.833 for atypical/normal MF and a mean class-averaged ROC-AUC score of 0.977 for discriminating the different phases of cells undergoing mitosis.
translated by 谷歌翻译
Computer-aided systems in histopathology are often challenged by various sources of domain shift that impact the performance of these algorithms considerably. We investigated the potential of using self-supervised pre-training to overcome scanner-induced domain shifts for the downstream task of tumor segmentation. For this, we present the Barlow Triplets to learn scanner-invariant representations from a multi-scanner dataset with local image correspondences. We show that self-supervised pre-training successfully aligned different scanner representations, which, interestingly only results in a limited benefit for our downstream task. We thereby provide insights into the influence of scanner characteristics for downstream applications and contribute to a better understanding of why established self-supervised methods have not yet shown the same success on histopathology data as they have for natural images.
translated by 谷歌翻译
由于形态的相似性,皮肤肿瘤的组织学切片分化为个体亚型可能具有挑战性。最近,基于深度学习的方法证明了它们在这方面支持病理学家的潜力。但是,这些监督算法中的许多都需要大量的注释数据才能进行稳健开发。我们提供了一个公开可用的数据集,该数据集是七个不同的犬皮肤肿瘤的350张全滑图像,其中有13种组织学类别的12,424个多边形注释,包括7种皮肤肿瘤亚型。在评估者间实验中,我们显示了提供的标签的高稠度,尤其是对于肿瘤注释。我们通过训练深层神经网络来进一步验证数据集,以完成组织分割和肿瘤亚型分类的任务。我们的肿瘤尤其是0.7047的类平均Jaccard系数为0.7047,尤其是0.9044。对于分类,我们达到了0.9857的幻灯片级准确性。由于犬皮肤肿瘤对人肿瘤具有各种组织学同源性,因此该数据集的附加值不限于兽医病理学,而是扩展到更一般的应用领域。
translated by 谷歌翻译
注释数据,尤其是在医疗领域,需要专家知识和很多努力。这限制了可用医疗数据集的实验量和/或有用性。因此,发展策略以增加注释的数量,同时降低所需的域知识是感兴趣的。可能的策略是使用游戏,即即将注释任务转换为游戏。我们提出了一种方法来游戏从病理整体幻灯片图像中注释肺部流体细胞的任务。由于该域是未知的非专家注释器所知,我们将用视网网架构检测到的细胞图像到花卉图像域。使用Compygan架构执行此域传输,用于不同的小区类型。在这种更科的域名中,非专家注释器可以(t)要求在俏皮的环境中注释不同种类的花朵。为了提供概念证据,该工作表明,通过评估在真实单元图像上培训的图像分类网络并在由Cyclegan网络生成的小区图像上测试的图像分类网络可以进行域传输。分类网络分别达到原始肺液体细胞和转化肺部流体细胞的精度​​为97.48%和95.16%。通过这项研究,我们为使用自行车队进行了未来的游戏研究的基础。
translated by 谷歌翻译
拖延是任务的非理性延迟,是在线学习中的普遍情况。潜在的负面后果包括更高的辍学风险,增加压力和情绪减少。由于学习管理系统和学习分析的增加,可以检测到这种行为的指标,从而预测未来的拖延和其他扩张行为。但是,关注此类预测的研究很少。此外,几乎不存在涉及不同类型的预测指标和预测性能之间的比较的研究。在这项研究中,我们旨在通过分析多个机器学习算法的性能来填补这些研究空白,以预测具有两类预测指标的高等教育环境中在线作业的延迟或及时提交:基于主观的,基于问卷的变量和目标,客观,客观,客观,目标,客观,客观,客观,客观,从学习管理系统中提取的基于日志数据的指标。结果表明,具有客观预测变量的模型始终优于主观预测指标的模型,并且两种变量类型的组合表现稍好一些。对于这三个选项中的每一个,一种不同的方法盛行(主观,贝叶斯多层次模型的梯度增强机器,共同预测指标的随机森林)。我们得出的结论是,在学习管理系统中实施此类模型之前,应仔细注意预测变量和算法。
translated by 谷歌翻译
随着深度学习和智能车辆的兴起,智能助手已成为促进驾驶和提供额外功能的基本内部组件。汽车智能助理应该能够处理一般的和与汽车有关的命令,并执行相应的操作,减轻驾驶和提高安全性。但是,对于低资源语言存在数据稀缺问题,妨碍了研究和应用的发展。在本文中,我们介绍了一个新的DataSet,粤式视听语音识别(CI-AVSR),用于粤语中的车载命令识别,具有视频和音频数据。它由令人宣传的30个粤语发言者记录的200个车载命令的4,984个样本(8.3小时)组成。此外,我们使用常见的内部内部背景噪声增强我们的数据集来模拟真实环境,产生比收集的数据集大10倍。我们提供我们数据集的清洁和增强版本的详细统计信息。此外,我们实施了两个多模式基线以证明CI-AVSR的有效性。实验结果表明,利用视觉信号提高了模型的整体性能。虽然我们的最佳模型可以在清洁测试集上实现相当大的质量,但嘈杂数据的语音识别质量仍然是较差的,并且仍然是真正的车载语音识别系统的极其具有挑战性的任务。数据集和代码将在https://github.com/hltchkust/ci-avsr发布。
translated by 谷歌翻译
低资源语言的自动语音识别(ASR)改善了语言少数群体的访问,以便人工智能(AI)提供的技术优势。在本文中,我们通过创建一个新的粤语数据集来解决香港广东语言的数据稀缺问题。我们的数据集多域粤语语料库(MDCC)由73.6小时的清洁阅读语音与成绩单配对,从香港的粤语有声读物收集。它结合了哲学,政治,教育,文化,生活方式和家庭领域,涵盖了广泛的主题。我们还查看所有现有的粤语数据集,并在两个最大的数据集(MDCC和公共语音ZH-HK)上执行实验。我们根据其语音类型,数据源,总大小和可用性分析现有数据集。使用Fairseq S2T变压器,最先进的ASR模型进行实验结果,显示了我们数据集的有效性。此外,我们通过在MDCC和常见的声音ZH-HK上应用多数据集学习来创建一个强大而强大的粤语ASR模型。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译