尽管机器学习的其他领域越来越多地自动化,但设计高性能的推荐系统仍然需要高水平的人力努力。此外,最近的工作表明,现代推荐系统算法并不总是比调整良好的基线改进。一个自然的后续问题是:“我们如何为新数据集和性能指标选择正确的算法?”在这项工作中,我们首先要通过比较85个数据集和315个指标的18算法和100组超参数的大规模研究。我们发现,最好的算法和超参数高度依赖于数据集和性能指标,但是,每种算法的性能与数据集的各种元元功能之间也存在很强的相关性。在这些发现的激励下,我们创建了Reczilla,这是一种推荐系统的元学习方法,该方法使用模型来预测新的,看不见的数据集的最佳算法和超参数。通过使用比先前的工作更多的元培训数据,Reczilla可以大大降低面对新推荐系统应用时人类参与水平。我们不仅发布了我们的代码和预处理的Reczilla模型,而且还发布了所有原始的实验结果,因此从业者可以为其所需的性能指标训练Reczilla模型:https://github.com/naszilla/reczilla。
translated by 谷歌翻译
虽然神经结构的早期研究搜索(NAS)所需的极端计算资源,但最近的表格和代理基准的版本大大提高了NAS研究的速度和再现性。但是,两个最受欢迎的基准测试不为每个架构提供完整的培训信息。结果,在这些基准上,不可能运行许多类型的多保真技术,例如学习曲线外推,这些技术需要在任意时期评估架构。在这项工作中,我们介绍了一种使用奇异值分解和噪声建模的方法来创建代理基准,NAS-Bench-111,NAS-BENCH-311和NAS-BENCH-NLP11,其输出每个架构的完整培训信息而不是最终的验证准确性。我们通过引入学习曲线外推框架来修改单一保真算法来展示使用完整培训信息的力量,示出它导致改进流行的单保真算法,该算法在释放时声称最先进的单一保真算法。我们的代码和预用模型可在https://github.com/automl/nas-bench-x11中获得。
translated by 谷歌翻译
由于机器学习模型变得越来越复杂和他们的应用程序变得越来越高赌注的,用于解释模型预测工具已经变得越来越重要。这促使模型explainability研究乱舞,并已引起了功能属性的方法,如石灰和SHAP。尽管它们的广泛使用,评价和比较不同功能属性的方法仍然具有挑战性:评价非常需要人的研究,以及实证评价指标往往是数据密集型或真实世界的数据集的计算望而却步。与基准特征归属算法库以及一套综合数据集:在这项工作中,我们通过释放XAI,台式解决这个问题。不同于现实世界的数据集,合成数据集允许那些需要评估地面实况夏普利值等指标的条件期望值的高效计算。我们释放合成的数据集提供了多种可配置模拟真实世界的数据参数。我们通过在多个评价指标和跨多种设置基准流行explainability技术展示我们的图书馆的力量。我们图书馆的多功能性和效率将有助于研究人员把他们的explainability方法从开发到部署。我们的代码可在https://github.com/abacusai/xai-bench。
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). Radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light conditions. However, radar sensors suffer from low resolution and huge intra-class variations in the shape of objects. Exploiting the time information (e.g., multiple frames) has been shown to help to capture better the dynamics of objects and, therefore, the variation in the shape of objects. Most temporal radar object detectors use 3D convolutions to learn spatial and temporal information. However, these methods are often non-causal and unsuitable for real-time applications. This work presents RECORD, a new recurrent CNN architecture for online radar object detection. We propose an end-to-end trainable architecture mixing convolutions and ConvLSTMs to learn spatio-temporal dependencies between successive frames. Our model is causal and requires only the past information encoded in the memory of the ConvLSTMs to detect objects. Our experiments show such a method's relevance for detecting objects in different radar representations (range-Doppler, range-angle) and outperform state-of-the-art models on the ROD2021 and CARRADA datasets while being less computationally expensive. The code will be available soon.
translated by 谷歌翻译
Deep learning models are being increasingly applied to imbalanced data in high stakes fields such as medicine, autonomous driving, and intelligence analysis. Imbalanced data compounds the black-box nature of deep networks because the relationships between classes may be highly skewed and unclear. This can reduce trust by model users and hamper the progress of developers of imbalanced learning algorithms. Existing methods that investigate imbalanced data complexity are geared toward binary classification, shallow learning models and low dimensional data. In addition, current eXplainable Artificial Intelligence (XAI) techniques mainly focus on converting opaque deep learning models into simpler models (e.g., decision trees) or mapping predictions for specific instances to inputs, instead of examining global data properties and complexities. Therefore, there is a need for a framework that is tailored to modern deep networks, that incorporates large, high dimensional, multi-class datasets, and uncovers data complexities commonly found in imbalanced data (e.g., class overlap, sub-concepts, and outlier instances). We propose a set of techniques that can be used by both deep learning model users to identify, visualize and understand class prototypes, sub-concepts and outlier instances; and by imbalanced learning algorithm developers to detect features and class exemplars that are key to model performance. Our framework also identifies instances that reside on the border of class decision boundaries, which can carry highly discriminative information. Unlike many existing XAI techniques which map model decisions to gray-scale pixel locations, we use saliency through back-propagation to identify and aggregate image color bands across entire classes. Our framework is publicly available at \url{https://github.com/dd1github/XAI_for_Imbalanced_Learning}
translated by 谷歌翻译
Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now, massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources that are only available to well-resourced teams. In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets, ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.
translated by 谷歌翻译
Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state space to find good policies. On the other hand, we postulate that expert knowledge of the system to control often allows us to design simple rules we expect good policies to follow at all times. In this work, we hence propose a simple yet effective modification of continuous actor-critic RL frameworks to incorporate such prior knowledge in the learned policies and constrain them to regions of the state space that are deemed interesting, thereby significantly accelerating their convergence. Concretely, we saturate the actions chosen by the agent if they do not comply with our intuition and, critically, modify the gradient update step of the policy to ensure the learning process does not suffer from the saturation step. On a room temperature control simulation case study, these modifications allow agents to converge to well-performing policies up to one order of magnitude faster than classical RL agents while retaining good final performance.
translated by 谷歌翻译
In Novel Class Discovery (NCD), the goal is to find new classes in an unlabeled set given a labeled set of known but different classes. While NCD has recently gained attention from the community, no framework has yet been proposed for heterogeneous tabular data, despite being a very common representation of data. In this paper, we propose TabularNCD, a new method for discovering novel classes in tabular data. We show a way to extract knowledge from already known classes to guide the discovery process of novel classes in the context of tabular data which contains heterogeneous variables. A part of this process is done by a new method for defining pseudo labels, and we follow recent findings in Multi-Task Learning to optimize a joint objective function. Our method demonstrates that NCD is not only applicable to images but also to heterogeneous tabular data.
translated by 谷歌翻译
In this paper, the CONFIG algorithm, a simple and provably efficient constrained global optimization algorithm, is applied to optimize the closed-loop control performance of an unknown system with unmodeled constraints. Existing Gaussian process based closed-loop optimization methods, either can only guarantee local convergence (e.g., SafeOPT), or have no known optimality guarantee (e.g., constrained expected improvement) at all, whereas the recently introduced CONFIG algorithm has been proven to enjoy a theoretical global optimality guarantee. In this study, we demonstrate the effectiveness of CONFIG algorithm in the applications. The algorithm is first applied to an artificial numerical benchmark problem to corroborate its effectiveness. It is then applied to a classical constrained steady-state optimization problem of a continuous stirred-tank reactor. Simulation results show that our CONFIG algorithm can achieve performance competitive with the popular CEI (Constrained Expected Improvement) algorithm, which has no known optimality guarantee. As such, the CONFIG algorithm offers a new tool, with both a provable global optimality guarantee and competitive empirical performance, to optimize the closed-loop control performance for a system with soft unmodeled constraints. Last, but not least, the open-source code is available as a python package to facilitate future applications.
translated by 谷歌翻译