最近的自然语言处理(NLP)技术在基准数据集中实现了高性能,主要原因是由于深度学习性能的显着改善。研究界的进步导致了最先进的NLP任务的生产系统的巨大增强,例如虚拟助理,语音识别和情感分析。然而,随着对抗性攻击测试时,这种NLP系统仍然仍然失败。初始缺乏稳健性暴露于当前模型的语言理解能力中的令人不安的差距,当NLP系统部署在现实生活中时,会产生问题。在本文中,我们通过以各种维度的系统方式概述文献来展示了NLP稳健性研究的结构化概述。然后,我们深入了解稳健性的各种维度,跨技术,指标,嵌入和基准。最后,我们认为,鲁棒性应该是多维的,提供对当前研究的见解,确定文学中的差距,以建议值得追求这些差距的方向。
translated by 谷歌翻译
本文着重于设计一种噪声端到端音频语音识别(AVSR)系统。为此,我们提出了视觉上下文驱动的音频功能增强模块(V-Cafe),以在视听通讯的帮助下增强输入噪声音频语音。所提出的V-Cafe旨在捕获唇部运动的过渡,即视觉上下文,并通过考虑获得的视觉上下文来产生降噪面膜。通过与上下文相关的建模,可以完善掩模生成Viseme-to-phoneme映射中的歧义。嘈杂的表示用降噪面膜掩盖,从而增强了音频功能。增强的音频功能与视觉特征融合在一起,并将其带入由构象异构体和变压器组成的编码器模型,以进行语音识别。我们显示了带有V-fafe的端到端AVSR,可以进一步改善AVSR的噪声。使用两个最大的视听数据集LRS2和LRS3评估了所提出方法的有效性。
translated by 谷歌翻译