森林中自主冬季导航所固有的挑战包括缺乏可靠的全球导航卫星系统(GNSS)信号,低特征对比度,高照明变化和变化环境。这种类型的越野环境是一个极端的情况,自治车可能会在北部地区遇到。因此,了解对自动导航系统对这种恶劣环境的影响非常重要。为此,我们介绍了一个现场报告分析亚曲率区域中的教导和重复导航,同时受到气象条件的大变化。首先,我们描述了系统,它依赖于点云注册来通过北方林地定位移动机器人,同时构建地图。我们通过在教学和重复模式下在自动导航中进行了在实验中评估了该系统。我们展示了密集的植被扰乱了GNSS信号,使其不适合在森林径中导航。此外,我们突出了在森林走廊中使用点云登记的定位相关的不确定性。我们证明它不是雪降水,而是影响我们系统在环境中定位的能力的积雪。最后,我们从我们的实地运动中揭示了一些经验教训和挑战,以支持在冬季条件下更好的实验工作。
translated by 谷歌翻译
Classical reinforcement learning (RL) techniques are generally concerned with the design of decision-making policies driven by the maximisation of the expected outcome. Nevertheless, this approach does not take into consideration the potential risk associated with the actions taken, which may be critical in certain applications. To address that issue, the present research work introduces a novel methodology based on distributional RL to derive sequential decision-making policies that are sensitive to the risk, the latter being modelled by the tail of the return probability distribution. The core idea is to replace the $Q$ function generally standing at the core of learning schemes in RL by another function taking into account both the expected return and the risk. Named the risk-based utility function $U$, it can be extracted from the random return distribution $Z$ naturally learnt by any distributional RL algorithm. This enables to span the complete potential trade-off between risk minimisation and expected return maximisation, in contrast to fully risk-averse methodologies. Fundamentally, this research yields a truly practical and accessible solution for learning risk-sensitive policies with minimal modification to the distributional RL algorithm, and with an emphasis on the interpretability of the resulting decision-making process.
translated by 谷歌翻译
Deep learning models are being increasingly applied to imbalanced data in high stakes fields such as medicine, autonomous driving, and intelligence analysis. Imbalanced data compounds the black-box nature of deep networks because the relationships between classes may be highly skewed and unclear. This can reduce trust by model users and hamper the progress of developers of imbalanced learning algorithms. Existing methods that investigate imbalanced data complexity are geared toward binary classification, shallow learning models and low dimensional data. In addition, current eXplainable Artificial Intelligence (XAI) techniques mainly focus on converting opaque deep learning models into simpler models (e.g., decision trees) or mapping predictions for specific instances to inputs, instead of examining global data properties and complexities. Therefore, there is a need for a framework that is tailored to modern deep networks, that incorporates large, high dimensional, multi-class datasets, and uncovers data complexities commonly found in imbalanced data (e.g., class overlap, sub-concepts, and outlier instances). We propose a set of techniques that can be used by both deep learning model users to identify, visualize and understand class prototypes, sub-concepts and outlier instances; and by imbalanced learning algorithm developers to detect features and class exemplars that are key to model performance. Our framework also identifies instances that reside on the border of class decision boundaries, which can carry highly discriminative information. Unlike many existing XAI techniques which map model decisions to gray-scale pixel locations, we use saliency through back-propagation to identify and aggregate image color bands across entire classes. Our framework is publicly available at \url{https://github.com/dd1github/XAI_for_Imbalanced_Learning}
translated by 谷歌翻译
A wide variety of model explanation approaches have been proposed in recent years, all guided by very different rationales and heuristics. In this paper, we take a new route and cast interpretability as a statistical inference problem. We propose a general deep probabilistic model designed to produce interpretable predictions. The model parameters can be learned via maximum likelihood, and the method can be adapted to any predictor network architecture and any type of prediction problem. Our method is a case of amortized interpretability models, where a neural network is used as a selector to allow for fast interpretation at inference time. Several popular interpretability methods are shown to be particular cases of regularised maximum likelihood for our general model. We propose new datasets with ground truth selection which allow for the evaluation of the features importance map. Using these datasets, we show experimentally that using multiple imputation provides more reasonable interpretations.
translated by 谷歌翻译
In this paper, we identify the best learning scenario to train a team of agents to compete against multiple possible strategies of opposing teams. We evaluate cooperative value-based methods in a mixed cooperative-competitive environment. We restrict ourselves to the case of a symmetric, partially observable, two-team Markov game. We selected three training methods based on the centralised training and decentralised execution (CTDE) paradigm: QMIX, MAVEN and QVMix. For each method, we considered three learning scenarios differentiated by the variety of team policies encountered during training. For our experiments, we modified the StarCraft Multi-Agent Challenge environment to create competitive environments where both teams could learn and compete simultaneously. Our results suggest that training against multiple evolving strategies achieves the best results when, for scoring their performances, teams are faced with several strategies.
translated by 谷歌翻译
Words of estimative probability (WEP) are expressions of a statement's plausibility (probably, maybe, likely, doubt, likely, unlikely, impossible...). Multiple surveys demonstrate the agreement of human evaluators when assigning numerical probability levels to WEP. For example, highly likely corresponds to a median chance of 0.90+-0.08 in Fagen-Ulmschneider (2015)'s survey. In this work, we measure the ability of neural language processing models to capture the consensual probability level associated to each WEP. Firstly, we use the UNLI dataset (Chen et al., 2020) which associates premises and hypotheses with their perceived joint probability p, to construct prompts, e.g. "[PREMISE]. [WEP], [HYPOTHESIS]." and assess whether language models can predict whether the WEP consensual probability level is close to p. Secondly, we construct a dataset of WEP-based probabilistic reasoning, to test whether language models can reason with WEP compositions. When prompted "[EVENTA] is likely. [EVENTB] is impossible.", a causal language model should not express that [EVENTA&B] is likely. We show that both tasks are unsolved by off-the-shelf English language models, but that fine-tuning leads to transferable improvement.
translated by 谷歌翻译
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
translated by 谷歌翻译
计算优化问题解决方案解决方案的雅各布是机器学习中的一个核心问题,其应用程序在超参数优化,元学习,优化为层和数据集蒸馏中的应用程序,仅举几例。展开的分化是一种流行的启发式方法,它使用迭代求解器近似溶液,并通过计算路径区分它。这项工作提供了对梯度下降和Chebyshev方法的二次目标的这种方法的非反应收敛速率分析。我们表明,为了确保雅各布的融合,我们可以1)选择较大的学习率,导致快速渐近地收敛,但接受该算法可能具有任意长的燃烧阶段或2)选择较小的学习率直接但较慢的收敛性。我们将这种现象称为展开的诅咒。最后,我们讨论了相对于这种方法的开放问题,例如为最佳展开策略得出实用的更新规则,并与Sobolev正交多项式领域建立了新的联系。
translated by 谷歌翻译
我们在本文中介绍了我们认为是视频游戏机翻译的首次尝试之一。我们的研究表明,只有有限的内域数据训练的模型超出了可公开可用的系统,随后的人类评估揭示了最终翻译中的有趣发现。本文的第一部分介绍了视频游戏翻译的一些挑战,一些现有文献以及本实验中使用的系统和数据集。最后一节讨论了我们对所得翻译的分析以及这种自动化系统的潜在好处。一个这样的发现突出了该模型学习从英语到法语的视频游戏翻译的典型规则和模式的能力。因此,我们的结论表明,鉴于令人鼓舞的结果,工作的高度重复性以及翻译人员在该领域中通常不良的工作条件,视频游戏机译的具体情况可能非常有用。但是,与文化部门中MT的其他用例一样,我们认为这在很大程度上取决于该工具的适当实施,该工具应与人类翻译人员进行交互方式来刺激创造力,而不是为了生产力而不是原始的后编辑。
translated by 谷歌翻译
捕获基于协变量的多变量响应载体之间的条件协方差或相关性对于包括神经科学,流行病学和生物医学在内的各个领域很重要。我们提出了一种新方法,称为随机森林(covregrf),以使用随机森林框架估算一个多变量响应的协方差矩阵。随机林木的建造具有专门设计的分裂规则,以最大化儿童节点的样本协方差矩阵估计值之间的差异。我们还提出了对协变量子集的部分效应的显着性检验。我们通过一项模拟研究评估了提出的方法和显着性测试的性能,该研究表明该方法提供了准确的协方差矩阵估计值,并且Type-1误差得到了很好的控制。我们还证明了该方法与甲状腺疾病数据集的应用。
translated by 谷歌翻译