许多微体系式优化为深度神经网络解锁了巨大的处理能力,从而促进了AI革命。随着这种优化的精疲力尽,现代AI的增长现在是通过培训系统的性能,尤其是其数据流动的。我们没有专注于单个加速器,而是研究了全系统规模的大规模培训的数据移动特征。基于我们的工作量分析,我们设计了HammingMesh,这是一种新颖的网络拓扑,以低成本提供高的带宽,并具有很高的工作计划灵活性。具体而言,HammingMesh可以支持具有两个并行性的两个维度的深度学习培训工作的完整带宽和隔离。此外,它还为通用流量的高全球带宽提供支持。因此,HammingMesh将为未来的大规模深度学习系统供电,并具有极端的带宽要求。
translated by 谷歌翻译
In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.
translated by 谷歌翻译
本文使用基于实例分割和图形匹配的LIDAR点云进行了极强和轻量级的定位。我们将3D点云建模为在语义上识别的组件的完全连接图,每个顶点对应于对象实例并编码其形状。跨图的最佳顶点关联允许通过测量相似性进行完整的6度自由(DOF)姿势估计和放置识别。这种表示非常简洁,将地图的大小缩合为25倍,而最先进的图像仅需要3KB代表1.4MB激光扫描。我们验证了系统在Semantickitti数据集中的功效,在该数据集中,我们获得了新的最新识别,平均召回了88.4%的召回,而下一个最接近的竞争对手则为64.9%。我们还显示了准确的度量姿势估计性能 - 估计中位误差为10 cm和0.33度的6 -DOF姿势。
translated by 谷歌翻译
本文提出了一种利用车辆运动限制来完善基于点的雷达辐射系统中的数据关联的方法。通过对非整体机器人如何限制在环境中平稳移动的强大先验,我们开发了必要的框架,以估算单个地标关联的自我运动,而不是一次考虑所有这些对应关系。这允许对差异不佳的匹配的明智异常检测,这是姿势估计误差的主要来源。通过完善匹配地标的子集,我们看到翻译误差的绝对降低2.15%(从4.68%到2.53%),大约比使用完整的对应关系时的探空仪(降低45.94%)的误差(减少45.94%)。该贡献与依赖范围传感器的其他基于点的探针计实现有关,并提供了一种轻巧且可解释的方法,用于将车辆动力学纳入自我动态估计。
translated by 谷歌翻译
在本文中,我们介绍了基于变化自动编码器(VAES)的卫星数据在卫星数据中改变检测的重量轻,无人监督的方法,具体用途。灾害管理等诸如诸如卫星观测的快速可用性的灾害。传统上,在将所有数据转移到地面后,在地面上执行数据分析 - 向地面站进行。因此,对下行链路功能的约束会影响任何下游应用程序。相比之下,Ravaen直接在卫星上预处理采样的数据,并标志改变了下行链路的优先级,缩短了响应时间。我们验证了我们的系统对由时间赛事的时间系列组成的效果 - 我们计划与本出版物一起发布 - 证明拉韦突出了像素明智的基准。最后,我们在资源限制硬件上测试了我们的方法,以评估计算和内存限制。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Model calibration, which is concerned with how frequently the model predicts correctly, not only plays a vital part in statistical model design, but also has substantial practical applications, such as optimal decision-making in the real world. However, it has been discovered that modern deep neural networks are generally poorly calibrated due to the overestimation (or underestimation) of predictive confidence, which is closely related to overfitting. In this paper, we propose Annealing Double-Head, a simple-to-implement but highly effective architecture for calibrating the DNN during training. To be precise, we construct an additional calibration head-a shallow neural network that typically has one latent layer-on top of the last latent layer in the normal model to map the logits to the aligned confidence. Furthermore, a simple Annealing technique that dynamically scales the logits by calibration head in training procedure is developed to improve its performance. Under both the in-distribution and distributional shift circumstances, we exhaustively evaluate our Annealing Double-Head architecture on multiple pairs of contemporary DNN architectures and vision and speech datasets. We demonstrate that our method achieves state-of-the-art model calibration performance without post-processing while simultaneously providing comparable predictive accuracy in comparison to other recently proposed calibration methods on a range of learning tasks.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译