超参数优化是识别给定的机器学习模型的适当的超参数配置的过程。对于较小的数据集,可以进行详尽的搜索;但是,当数据大小和模型复杂性增加时,配置评估的数量成为主要计算瓶颈。解决此类问题的有希望的范式是基于替代物的优化。此范式基础的主要思想考虑了超参数空间与输出(目标)空间之间关系的增量更新模型;该模型的数据是通过评估主学习引擎来获得的,例如基于计算机的模型。通过学习近似超参数目标关系,可以使用替代(机器学习)模型来评分大量的超参数配置,并探索除直接机器学习引擎评估的配置空间的一部分。通常,在优化初始化之前选择替代物,并且在搜索过程中保持不变。我们调查了在优化本身期间代孕物质的动态切换是否是选择最合适的基于计算机的大规模在线推荐的最合适的分解模型的实用相关性的明智概念。我们对包含数亿个实例的数据集进行了基准测试,以针对既定基线,例如随机森林和高斯基于过程的替代物。结果表明,替代转换可以提供良好的性能,同时考虑学习引擎评估较少。
translated by 谷歌翻译