模仿学习在有效地学习政策方面对复杂的决策问题有着巨大的希望。当前的最新算法经常使用逆增强学习(IRL),在给定一组专家演示的情况下,代理会替代奖励功能和相关的最佳策略。但是,这种IRL方法通常需要在复杂控制问题上进行实质性的在线互动。在这项工作中,我们提出了正规化的最佳运输(ROT),这是一种新的模仿学习算法,基于最佳基于最佳运输轨迹匹配的最新进展。我们的主要技术见解是,即使只有少量演示,即使只有少量演示,也可以自适应地将轨迹匹配的奖励与行为克隆相结合。我们对横跨DeepMind Control Suite,OpenAI Robotics和Meta-World基准的20个视觉控制任务进行的实验表明,与先前最新的方法相比,平均仿真达到了90%的专家绩效的速度,达到了90%的专家性能。 。在现实世界的机器人操作中,只有一次演示和一个小时的在线培训,ROT在14个任务中的平均成功率为90.1%。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to transform input examples, as well as regularizing the value function and policy. Existing model-free approaches, such as Soft Actor-Critic (SAC) [22], are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based [23,38,24] methods and recently proposed contrastive learning [50]. Our approach, which we dub DrQ: Data-regularized Q, can be combined with any model-free reinforcement learning algorithm. We further demonstrate this by applying it to DQN [43] and significantly improve its data-efficiency on the Atari 100k [31] benchmark. An implementation can be found at https://sites. google.com/view/data-regularized-q.
translated by 谷歌翻译
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. 1 Compared to recurrent models, computations over all elements can be fully parallelized during training to better exploit the GPU hardware and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.
translated by 谷歌翻译
Probabilistic Law Discovery (PLD) is a logic based Machine Learning method, which implements a variant of probabilistic rule learning. In several aspects, PLD is close to Decision Tree/Random Forest methods, but it differs significantly in how relevant rules are defined. The learning procedure of PLD solves the optimization problem related to the search for rules (called probabilistic laws), which have a minimal length and relatively high probability. At inference, ensembles of these rules are used for prediction. Probabilistic laws are human-readable and PLD based models are transparent and inherently interpretable. Applications of PLD include classification/clusterization/regression tasks, as well as time series analysis/anomaly detection and adaptive (robotic) control. In this paper, we outline the main principles of PLD, highlight its benefits and limitations and provide some application guidelines.
translated by 谷歌翻译
We study the multiclass classification problem where the features come from the mixture of time-homogeneous diffusions. Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in classifier which relies on nonparametric estimators of the drift and diffusion functions. We first establish the consistency of our classification procedure under mild assumptions and then provide rates of cnvergence under different set of assumptions. Finally, a numerical study supports our theoretical findings.
translated by 谷歌翻译
In many real-world scenarios, the absence of external knowledge source like Wikipedia restricts question answering systems to rely on latent internal knowledge in limited dialogue data. In addition, humans often seek answers by asking several questions for more comprehensive information. As the dialog becomes more extensive, machines are challenged to refer to previous conversation rounds to answer questions. In this work, we propose to leverage latent knowledge in existing conversation logs via a neural Retrieval-Reading system, enhanced with a TFIDF-based text summarizer refining lengthy conversational history to alleviate the long context issue. Our experiments show that our Retrieval-Reading system can exploit retrieved background knowledge to generate significantly better answers. The results also indicate that our context summarizer significantly helps both the retriever and the reader by introducing more concise and less noisy contextual information.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
translated by 谷歌翻译
Creating realistic virtual assets is a time-consuming process: it usually involves an artist designing the object, then spending a lot of effort on tweaking its appearance. Intricate details and certain effects, such as subsurface scattering, elude representation using real-time BRDFs, making it impossible to fully capture the appearance of certain objects. Inspired by the recent progress of neural rendering, we propose an approach for capturing real-world objects in everyday environments faithfully and fast. We use a novel neural representation to reconstruct volumetric effects, such as translucent object parts, and preserve photorealistic object appearance. To support real-time rendering without compromising rendering quality, our model uses a grid of features and a small MLP decoder that is transpiled into efficient shader code with interactive framerates. This leads to a seamless integration of the proposed neural assets with existing mesh environments and objects. Thanks to the use of standard shader code rendering is portable across many existing hardware and software systems.
translated by 谷歌翻译