Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
Cone beam computed tomography (CBCT) has been widely used in clinical practice, especially in dental clinics, while the radiation dose of X-rays when capturing has been a long concern in CBCT imaging. Several research works have been proposed to reconstruct high-quality CBCT images from sparse-view 2D projections, but the current state-of-the-arts suffer from artifacts and the lack of fine details. In this paper, we propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields, where we have invented a novel view augmentation strategy to overcome the challenges introduced by insufficient data from sparse input views. Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views (25 times fewer than clinical collections), which outperforms the state-of-the-arts. We have further conducted comprehensive experiments and ablation analysis to validate the effectiveness of our approach.
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
胸部X射线(CXR)图像中的肺结节检测是肺癌的早期筛查。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增加数据增强而提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新颖的肺结综合框架,该框架分别将结节属性分为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状掩模来建模结节形状。然后,以下大小调制可以对像素级粒度中生成的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成结节CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结构合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。
translated by 谷歌翻译
多模式的医学图像完成已广泛应用,以减轻许多多模式诊断任务中缺失的模式问题。但是,对于大多数现有的合成方法,它们缺失模式的推断可能会崩溃为确定性映射,从而忽略了跨模式关系中固有的不确定性。在这里,我们提出了统一的多模式条件分数的生成模型(UMM-CSGM),以利用基于得分的生成模型(SGM)在建模和随机采样目标概率分布中,并进一步将SGM扩展到交叉模式统一框架中各种缺失模式配置的条件合成。具体而言,UMM-CSGM采用一种新型的多中心条件分数网络(MM-CSN),通过在完整的模态空间中的条件扩散和反向产生来学习一组综合的跨模式条件分布。通过这种方式,可以通过所有可用信息来准确地制定生成过程,并可以符合单个网络中缺少模式的所有可能配置。 BRATS19数据集的实验表明,UMM-CSGM可以更可靠地合成肿瘤诱导的任何缺失方式的肿瘤诱导病变中的异质增强和不规则面积。
translated by 谷歌翻译
在数字组织病理学分析中,污渍变化通常会降低基于深度学习的方法的概括能力。两项单独的建议,即染色标准化(SN)和染色增强(SA),已聚焦以减少概括错误,在此,前者使用模板图像减轻了不同医疗中心的污渍转移,后者则丰富了后者的污渍样式,并通过污染中心的误差。模拟更多的污渍变化。但是,它们的应用是由选择模板图像和不现实样式的构建的界定。为了解决这些问题,我们将SN和SA与新颖的Randstainna方案统一,该方案在可行的范围内限制了可变污渍样式,以训练污渍不可知论的深度学习模型。 Randstainna适用于在颜色空间集合中染色归一化,即HED,HSV,实验室。此外,我们提出了一个随机的颜色空间选择方案,以提高性能。我们通过两个诊断任务,即具有各种网络骨架的诊断任务,即组织亚型分类和核分割。拟议的Randstainna可以始终如一地提高概括能力,使我们的模型可以应对具有不可预测的污渍样式的更传入的临床数据集,因此所提出的Randstainna的性能优势可以始终如一地提高概括能力。这些代码可从https://github.com/yiqings/randstainna获得。
translated by 谷歌翻译
快捷方式学习对深度学习模型很常见,但导致了退化的特征表示形式,因此危害了该模型的可推广性和解释性。但是,在广泛使用的视觉变压器框架中的快捷方式学习在很大程度上是未知的。同时,引入特定领域的知识是纠正捷径的主要方法,捷径为背景相关因素。例如,在医学成像领域中,放射科医生的眼睛凝视数据是一种有效的人类视觉先验知识,具有指导深度学习模型的巨大潜力,可以专注于有意义的前景区域。但是,获得眼睛凝视数据是时必的,劳动密集型的,有时甚至是不切实际的。在这项工作中,我们提出了一种新颖而有效的显着性视觉变压器(SGT)模型,以在没有眼神数据的情况下在VIT中纠正快捷方式学习。具体而言,采用计算视觉显着性模型来预测输入图像样本的显着性图。然后,显着图用于散布最有用的图像贴片。在拟议的中士中,图像贴片之间的自我注意力仅集中于蒸馏的信息。考虑到这种蒸馏操作可能会导致全局信息丢失,我们在最后一个编码器层中进一步介绍了一个残留的连接,该连接捕获了所有图像贴片中的自我注意力。四个独立公共数据集的实验结果表明,我们的SGT框架可以有效地学习和利用人类的先验知识,而无需眼睛凝视数据,并且比基线更好。同时,它成功地纠正了有害的快捷方式学习并显着提高了VIT模型的解释性,证明了传递人类先验知识在纠正快捷方式学习方面传递人类先验知识的承诺
translated by 谷歌翻译
在临床实践中,由于存储成本和隐私限制,通常需要进行分割网络在多个站点而不是合并集的顺序数据流上不断学习。但是,在持续学习过程中,现有方法通常在以前的网站上的网络记忆性或看不见的站点上的概括性中受到限制。本文旨在解决同步记忆性和概括性(SMG)的挑战性问题,并使用新颖的SMG学习框架同时提高以前和看不见的地点的性能。首先,我们提出一个同步梯度对准(SGA)目标,\ emph {不仅}通过对先前站点(称为重播缓冲区)的小型示例进行协调优化,从而促进网络的记忆力,\ emph {but emph {又增强了}的增强。通过促进模拟域移位下的现场不变性来概括。其次,为了简化SGA目标的优化,我们设计了一种双META算法,该算法将SGA目标近似为双元目标,以优化,而无需昂贵的计算开销。第三,为了有效的排练,我们全面考虑了重播缓冲区,以考虑额外的地点多样性以降低冗余。从六个机构中依次获得的前列腺MRI数据实验表明,我们的方法可以同时获得更高的记忆性和对最先进方法的可推广性。代码可在https://github.com/jingyzhang/smg-learning上找到。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译