增强业务流程管理系统(ABPMS)是一类新兴的过程感知信息系统,可利用值得信赖的AI技术。ABPMS增强了业务流程的执行,目的是使这些过程更加适应性,主动,可解释和上下文敏感。该宣言为ABPMS提供了愿景,并讨论了需要克服实现这一愿景的研究挑战。为此,我们定义了ABPM的概念,概述了ABPMS中流程的生命周期,我们讨论了ABPMS的核心特征,并提出了一系列挑战以实现具有这些特征的系统。
translated by 谷歌翻译
为了确定性能问题的原因或预测过程行为,必须具有正确和完整的事件数据至关重要。这对于具有共享资源的分布式系统尤其重要,例如,例如,一个案例可以阻止对同一台机器竞争的另一个案例,从而导致性能的帧间依赖性。然而,由于各种原因,现实系统通常只记录所有事件的子集。要了解和分析共享资源的进程的行为和性能,我们的目标是重建必须发生的情况的事件时间戳的界限,但在系统中的其他情况下未推断出现引人注目。我们通过系统地在事件日志和流程模型中系统地引入多实体概念来制定和解决问题。我们介绍了一种基于多实体事件日志的部分级模型和用于多实体进程的相应组合模型。我们将PQR-Systems定义为具有共享资源和队列的特殊类多实体进程。然后,我们研究了从一个不完整的事件日志未观察的事件和它们的时间戳推断出与PQR系统一致的时间戳。通过根据PQR模型重建未观察的资源和队列来解决问题,并使用线性程序导出其时间戳的界限。虽然在机场的行李处理系统如行李处理系统中的材料处理系统说明了问题,但该方法可以应用于录制不完整的其他设置。这些想法已在PROM中实现,并使用合成和实际事件日志进行评估。
translated by 谷歌翻译
Increasingly taking place in online spaces, modern political conversations are typically perceived to be unproductively affirming -- siloed in so called ``echo chambers'' of exclusively like-minded discussants. Yet, to date we lack sufficient means to measure viewpoint diversity in conversations. To this end, in this paper, we operationalize two viewpoint metrics proposed for recommender systems and adapt them to the context of social media conversations. This is the first study to apply these two metrics (Representation and Fragmentation) to real world data and to consider the implications for online conversations specifically. We apply these measures to two topics -- daylight savings time (DST), which serves as a control, and the more politically polarized topic of immigration. We find that the diversity scores for both Fragmentation and Representation are lower for immigration than for DST. Further, we find that while pro-immigrant views receive consistent pushback on the platform, anti-immigrant views largely operate within echo chambers. We observe less severe yet similar patterns for DST. Taken together, Representation and Fragmentation paint a meaningful and important new picture of viewpoint diversity.
translated by 谷歌翻译
Electricity prices in liberalized markets are determined by the supply and demand for electric power, which are in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet the residual load, i.e. the difference of load and renewable generation. Many market models implement this principle to predict electricity prices but typically require certain assumptions and simplifications. In this article, we present an explainable machine learning model for the prices on the German day-ahead market, which substantially outperforms a benchmark model based on the merit order principle. Our model is designed for the ex-post analysis of prices and thus builds on various external features. Using Shapley Additive exPlanation (SHAP) values, we can disentangle the role of the different features and quantify their importance from empiric data. Load, wind and solar generation are most important, as expected, but wind power appears to affect prices stronger than solar power does. Fuel prices also rank highly and show nontrivial dependencies, including strong interactions with other features revealed by a SHAP interaction analysis. Large generation ramps are correlated with high prices, again with strong feature interactions, due to the limited flexibility of nuclear and lignite plants. Our results further contribute to model development by providing quantitative insights directly from data.
translated by 谷歌翻译
Data-driven modeling has become a key building block in computational science and engineering. However, data that are available in science and engineering are typically scarce, often polluted with noise and affected by measurement errors and other perturbations, which makes learning the dynamics of systems challenging. In this work, we propose to combine data-driven modeling via operator inference with the dynamic training via roll outs of neural ordinary differential equations. Operator inference with roll outs inherits interpretability, scalability, and structure preservation of traditional operator inference while leveraging the dynamic training via roll outs over multiple time steps to increase stability and robustness for learning from low-quality and noisy data. Numerical experiments with data describing shallow water waves and surface quasi-geostrophic dynamics demonstrate that operator inference with roll outs provides predictive models from training trajectories even if data are sampled sparsely in time and polluted with noise of up to 10%.
translated by 谷歌翻译
Brain-inspired computing proposes a set of algorithmic principles that hold promise for advancing artificial intelligence. They endow systems with self learning capabilities, efficient energy usage, and high storage capacity. A core concept that lies at the heart of brain computation is sequence learning and prediction. This form of computation is essential for almost all our daily tasks such as movement generation, perception, and language. Understanding how the brain performs such a computation is not only important to advance neuroscience but also to pave the way to new technological brain-inspired applications. A previously developed spiking neural network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. An emerging type of hardware that holds promise for efficiently running this type of algorithm is neuromorphic hardware. It emulates the way the brain processes information and maps neurons and synapses directly into a physical substrate. Memristive devices have been identified as potential synaptic elements in neuromorphic hardware. In particular, redox-induced resistive random access memories (ReRAM) devices stand out at many aspects. They permit scalability, are energy efficient and fast, and can implement biological plasticity rules. In this work, we study the feasibility of using ReRAM devices as a replacement of the biological synapses in the sequence learning model. We implement and simulate the model including the ReRAM plasticity using the neural simulator NEST. We investigate the effect of different device properties on the performance characteristics of the sequence learning model, and demonstrate resilience with respect to different on-off ratios, conductance resolutions, device variability, and synaptic failure.
translated by 谷歌翻译
Accurate and consistent vehicle localization in urban areas is challenging due to the large-scale and complicated environments. In this paper, we propose onlineFGO, a novel time-centric graph-optimization-based localization method that fuses multiple sensor measurements with the continuous-time trajectory representation for vehicle localization tasks. We generalize the graph construction independent of any spatial sensor measurements by creating the states deterministically on time. As the trajectory representation in continuous-time enables querying states at arbitrary times, incoming sensor measurements can be factorized on the graph without requiring state alignment. We integrate different GNSS observations: pseudorange, deltarange, and time-differenced carrier phase (TDCP) to ensure global reference and fuse the relative motion from a LiDAR-odometry to improve the localization consistency while GNSS observations are not available. Experiments on general performance, effects of different factors, and hyper-parameter settings are conducted in a real-world measurement campaign in Aachen city that contains different urban scenarios. Our results show an average 2D error of 0.99m and consistent state estimation in urban scenarios.
translated by 谷歌翻译
This article focuses on the control center of each human body: the brain. We will point out the pivotal role of the cerebral vasculature and how its complex mechanisms may vary between subjects. We then emphasize a specific acute pathological state, i.e., acute ischemic stroke, and show how medical imaging and its analysis can be used to define the treatment. We show how the core-penumbra concept is used in practice using mismatch criteria and how machine learning can be used to make predictions of the final infarct, either via deconvolution or convolutional neural networks.
translated by 谷歌翻译
Pre-trained language models (PLMs) have outperformed other NLP models on a wide range of tasks. Opting for a more thorough understanding of their capabilities and inner workings, researchers have established the extend to which they capture lower-level knowledge like grammaticality, and mid-level semantic knowledge like factual understanding. However, there is still little understanding of their knowledge of higher-level aspects of language. In particular, despite the importance of sociodemographic aspects in shaping our language, the questions of whether, where, and how PLMs encode these aspects, e.g., gender or age, is still unexplored. We address this research gap by probing the sociodemographic knowledge of different single-GPU PLMs on multiple English data sets via traditional classifier probing and information-theoretic minimum description length probing. Our results show that PLMs do encode these sociodemographics, and that this knowledge is sometimes spread across the layers of some of the tested PLMs. We further conduct a multilingual analysis and investigate the effect of supplementary training to further explore to what extent, where, and with what amount of pre-training data the knowledge is encoded. Our overall results indicate that sociodemographic knowledge is still a major challenge for NLP. PLMs require large amounts of pre-training data to acquire the knowledge and models that excel in general language understanding do not seem to own more knowledge about these aspects.
translated by 谷歌翻译
Fairness and environmental impact are important research directions for the sustainable development of artificial intelligence. However, while each topic is an active research area in natural language processing (NLP), there is a surprising lack of research on the interplay between the two fields. This lacuna is highly problematic, since there is increasing evidence that an exclusive focus on fairness can actually hinder environmental sustainability, and vice versa. In this work, we shed light on this crucial intersection in NLP by (1) investigating the efficiency of current fairness approaches through surveying example methods for reducing unfair stereotypical bias from the literature, and (2) evaluating a common technique to reduce energy consumption (and thus environmental impact) of English NLP models, knowledge distillation (KD), for its impact on fairness. In this case study, we evaluate the effect of important KD factors, including layer and dimensionality reduction, with respect to: (a) performance on the distillation task (natural language inference and semantic similarity prediction), and (b) multiple measures and dimensions of stereotypical bias (e.g., gender bias measured via the Word Embedding Association Test). Our results lead us to clarify current assumptions regarding the effect of KD on unfair bias: contrary to other findings, we show that KD can actually decrease model fairness.
translated by 谷歌翻译