Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment and loop detection in simultaneous localization and mapping. The loop detection sub-task is especially relevant when a robot with an on-board RGB-D camera can drive past the same place (``Point") at different angles. The dataset is based on the popular Habitat simulator, in which it is possible to generate photorealistic indoor scenes using both own sensor data and open datasets, such as Matterport3D. To study the main stages of solving the place recognition problem on the HPointLoc dataset, we proposed a new modular approach named as PNTR. It first performs an image retrieval with the Patch-NetVLAD method, then extracts keypoints and matches them using R2D2, LoFTR or SuperPoint with SuperGlue, and finally performs a camera pose optimization step with TEASER++. Such a solution to the place recognition problem has not been previously studied in existing publications. The PNTR approach has shown the best quality metrics on the HPointLoc dataset and has a high potential for real use in localization systems for unmanned vehicles. The proposed dataset and framework are publicly available: https://github.com/metra4ok/HPointLoc.
translated by 谷歌翻译
In this paper we study the smooth strongly convex minimization problem $\min_{x}\min_y f(x,y)$. The existing optimal first-order methods require $\mathcal{O}(\sqrt{\max\{\kappa_x,\kappa_y\}} \log 1/\epsilon)$ of computations of both $\nabla_x f(x,y)$ and $\nabla_y f(x,y)$, where $\kappa_x$ and $\kappa_y$ are condition numbers with respect to variable blocks $x$ and $y$. We propose a new algorithm that only requires $\mathcal{O}(\sqrt{\kappa_x} \log 1/\epsilon)$ of computations of $\nabla_x f(x,y)$ and $\mathcal{O}(\sqrt{\kappa_y} \log 1/\epsilon)$ computations of $\nabla_y f(x,y)$. In some applications $\kappa_x \gg \kappa_y$, and computation of $\nabla_y f(x,y)$ is significantly cheaper than computation of $\nabla_x f(x,y)$. In this case, our algorithm substantially outperforms the existing state-of-the-art methods.
translated by 谷歌翻译
Domain adaptation of GANs is a problem of fine-tuning the state-of-the-art GAN models (e.g. StyleGAN) pretrained on a large dataset to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are a great number of methods that tackle this problem in different ways there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. First, we perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. In particular, we show that affine layers of StyleGAN can be sufficient for fine-tuning to similar domains. Second, inspired by these findings, we investigate StyleSpace to utilize it for domain adaptation. We show that there exist directions in the StyleSpace that can adapt StyleGAN to new domains. Further, we examine these directions and discover their many surprising properties. Finally, we leverage our analysis and findings to deliver practical improvements and applications in such standard tasks as image-to-image translation and cross-domain morphing.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
There is an increasing need in our society to achieve faster advances in Science to tackle urgent problems, such as climate changes, environmental hazards, sustainable energy systems, pandemics, among others. In certain domains like chemistry, scientific discovery carries the extra burden of assessing risks of the proposed novel solutions before moving to the experimental stage. Despite several recent advances in Machine Learning and AI to address some of these challenges, there is still a gap in technologies to support end-to-end discovery applications, integrating the myriad of available technologies into a coherent, orchestrated, yet flexible discovery process. Such applications need to handle complex knowledge management at scale, enabling knowledge consumption and production in a timely and efficient way for subject matter experts (SMEs). Furthermore, the discovery of novel functional materials strongly relies on the development of exploration strategies in the chemical space. For instance, generative models have gained attention within the scientific community due to their ability to generate enormous volumes of novel molecules across material domains. These models exhibit extreme creativity that often translates in low viability of the generated candidates. In this work, we propose a workbench framework that aims at enabling the human-AI co-creation to reduce the time until the first discovery and the opportunity costs involved. This framework relies on a knowledge base with domain and process knowledge, and user-interaction components to acquire knowledge and advise the SMEs. Currently,the framework supports four main activities: generative modeling, dataset triage, molecule adjudication, and risk assessment.
translated by 谷歌翻译
Visualization methods based on the nearest neighbor graph, such as t-SNE or UMAP, are widely used for visualizing high-dimensional data. Yet, these approaches only produce meaningful results if the nearest neighbors themselves are meaningful. For images represented in pixel space this is not the case, as distances in pixel space are often not capturing our sense of similarity and therefore neighbors are not semantically close. This problem can be circumvented by self-supervised approaches based on contrastive learning, such as SimCLR, relying on data augmentation to generate implicit neighbors, but these methods do not produce two-dimensional embeddings suitable for visualization. Here, we present a new method, called t-SimCNE, for unsupervised visualization of image data. T-SimCNE combines ideas from contrastive learning and neighbor embeddings, and trains a parametric mapping from the high-dimensional pixel space into two dimensions. We show that the resulting 2D embeddings achieve classification accuracy comparable to the state-of-the-art high-dimensional SimCLR representations, thus faithfully capturing semantic relationships. Using t-SimCNE, we obtain informative visualizations of the CIFAR-10 and CIFAR-100 datasets, showing rich cluster structure and highlighting artifacts and outliers.
translated by 谷歌翻译
单模光纤(SMF)已成为现代通信系统的骨干。但是,他们的吞吐量有望在不久的将来达到其理论限制。多模纤维(MMF)的利用被认为是纠正此容量紧缩的最有前途的解决方案之一。然而,描述MMF中的光传播的微分方程比SMF的差异更复杂,这使得基于MMF的系统的数值建模在计算上是对现实场景的大部分要求是必需的且不切实际的。已知物理知识的神经网络(PINN)在各个领域都超过常规数值方法,并已成功应用于非线性Schr \“ Odinger方程(NLSE),描述了SMF中的光传播。 nlse(mmnlse)仍然缺乏。据我们所知,本文是第一个为mmnlse部署Pinn范式的文章,并证明通过类比与NLSE的Pinns实现了直接的实现。我们无法确定所有内容。我们确定所有内容。阻碍Pinn收敛的问题,并引入了零级分散系数的新颖缩放转换,使Pinn捕获了所有相关的物理效果。我们的模拟揭示了与拆分型傅立叶(SSF)方法的良好一致性,并扩展了可实现的可实现的传播长度一百米。所有主要限制也被突出显示。
translated by 谷歌翻译
为了有效地学习新环境中任务的动态模型,可以调整在类似的源环境中学习的模型。但是,当目标数据集包含动态与源环境大不相同的过渡时,现有的适应方法可能会失败。例如,源环境动力学可能是在自由空间中操纵的绳索,而目标动态可能涉及碰撞和障碍物的变形。我们的关键见解是通过将模型适应仅关注源和目标动力学相似的区域来提高数据效率。在绳索示例中,调整自由空间动力学比调整自由空间动力学的同时学习碰撞动力学所需的数据要少得多。我们提出了一种适应的新方法,该方法可有效适应类似动态的区域。此外,我们将这种适应方法与先前在计划的工作结合使用,并使用不可靠的动态来制定一种称为焦点的数据有效的在线适应方法。我们首先证明,所提出的适应方法在模拟绳索操纵和植物浇水任务上相似动力学区域的预测误差在统计学上显着降低了预测误差。然后,我们展示了一项双层绳索操纵任务,该任务重点是在模拟和现实世界中实现数据效率的在线学习。
translated by 谷歌翻译
自动临床标题生成问题被称为建议模型,将额叶X射线扫描与放射学记录中的结构化患者信息结合在一起。我们将两种语言模型结合在一起,即表演 - 泰尔和GPT-3,以生成全面和描述性的放射学记录。这些模型的建议组合产生了文本摘要,其中包含有关发现的病理,其位置以及将每个病理定位在原始X射线扫描中的每个病理的2D热图。提出的模型在两个医学数据集(Open-I,Mimic-CXR和通用MS-Coco)上进行了测试。用自然语言评估指标测量的结果证明了它们对胸部X射线图像字幕的有效适用性。
translated by 谷歌翻译