Despite significant advances in image anomaly detection and segmentation, few methods use 3D information. We utilize a recently introduced 3D anomaly detection dataset to evaluate whether or not using 3D information is a lost opportunity. First, we present a surprising finding: standard color-only methods outperform all current methods that are explicitly designed to exploit 3D information. This is counter-intuitive as even a simple inspection of the dataset shows that color-only methods are insufficient for images containing geometric anomalies. This motivates the question: how can anomaly detection methods effectively use 3D information? We investigate a range of shape representations including hand-crafted and deep-learning-based; we demonstrate that rotation invariance plays the leading role in the performance. We uncover a simple 3D-only method that beats all recent approaches while not using deep learning, external pre-training datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with color-based features, significantly outperforming previous state-of-the-art. Our method, dubbed BTF (Back to the Feature) achieves pixel-wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.
translated by 谷歌翻译
在本文中,我们基于单个图像呈现Deadsim,用于条件图像操纵的生成模型。我们发现广泛的增强是启用单个图像训练的关键,并将使用薄板样条(TPS)作为有效的增强。我们的网络学习在图像本身的图像的原始表示之间映射。原始表示的选择对操纵的缓和和表达性产生影响,并且可以是自动的(例如边缘),手动(例如分段)或混合,例如分割顶部的边缘。在操纵时间时,我们的生成器允许通过修改原始输入表示并通过网络映射映射来进行复杂的图像更改。我们的方法显示在图像操纵任务上实现了显着性能。
translated by 谷歌翻译
在本文中,我们基于单个图像呈现Deadsim,用于条件图像操纵的生成模型。我们发现广泛的增强是启用单个图像训练的关键,并将使用薄板样条(TPS)作为有效的增强。我们的网络学习在图像本身的图像的原始表示之间映射。原始表示的选择对操纵的缓和和表达性产生影响,并且可以是自动的(例如边缘),手动(例如分段)或混合,例如分割顶部的边缘。在操纵时间时,我们的生成器允许通过修改原始输入表示并通过网络映射映射来进行复杂的图像更改。我们的方法显示在图像操纵任务上实现了显着性能。
translated by 谷歌翻译