Recent advances in generative adversarial networks (GANs) have demonstrated the capabilities of generating stunning photo-realistic portrait images. While some prior works have applied such image GANs to unconditional 2D portrait video generation and static 3D portrait synthesis, there are few works successfully extending GANs for generating 3D-aware portrait videos. In this work, we propose PV3D, the first generative framework that can synthesize multi-view consistent portrait videos. Specifically, our method extends the recent static 3D-aware image GAN to the video domain by generalizing the 3D implicit neural representation to model the spatio-temporal space. To introduce motion dynamics to the generation process, we develop a motion generator by stacking multiple motion layers to generate motion features via modulated convolution. To alleviate motion ambiguities caused by camera/human motions, we propose a simple yet effective camera condition strategy for PV3D, enabling both temporal and multi-view consistent video generation. Moreover, PV3D introduces two discriminators for regularizing the spatial and temporal domains to ensure the plausibility of the generated portrait videos. These elaborated designs enable PV3D to generate 3D-aware motion-plausible portrait videos with high-quality appearance and geometry, significantly outperforming prior works. As a result, PV3D is able to support many downstream applications such as animating static portraits and view-consistent video motion editing. Code and models will be released at https://showlab.github.io/pv3d.
translated by 谷歌翻译
在本报告中,我们建议针对四个EGO4D挑战任务,包括自然语言查询(NLQ),MOMMER QUERY(MQ),对象状态变更分类(OSCC),以及PNR定位(PNR)。尤其是,我们将最近发布的EGO4D数据集\ cite {grauman2021ego4d}从预处理数据集,预处理目标和开发集中从egecentric vlp中提升。基于上述三个设计,我们开发了一个验证的视频语言模型,该模型能够将其以自我为中心的视频文本表示或仅视频表示形式转移到几个视频下游任务中。我们的Egentric VLP在NLQ上实现10.46r@1&iou @0.3,MQ上的10.33地图,OSCC上的74%ACC,PNR上的0.67秒错误。该代码可在https://github.com/showlab/egovlp上找到。
translated by 谷歌翻译
在本报告中,我们为Epic-kitchens-100多实体检索(miR)挑战提出了一个基于视频的预处理(VLP)解决方案\ cite {kevin202222222egovlp}。尤其是,我们将最近发布的EGO4D数据集\ cite {grauman2021ego4d}从预处理数据集,预处理目标和开发集中从egecentric vlp中提升。基于上述三个设计,我们开发了一个预验证的视频语言模型,该模型能够将其自我为中心的视频文本表示为mir基准。此外,我们设计了一种自适应多构度最大损失,以有效地微调模型并为可靠的推理配备双重效果技术。我们最好的单个模型在挑战测试集上获得了强劲的性能,其中47.39%的地图和61.44%的NDCG。该代码可在https://github.com/showlab/egovlp上找到。
translated by 谷歌翻译
视听扬声器日复速度旨在检测使用听觉和视觉信号时的``谁说话。现有的视听深度数据集主要专注于会议室或新闻工作室等室内环境,这些工作室与电影,纪录片和观众情景喜剧等许多情景中的野外视频完全不同。要创建一个能够有效地比较野外视频的日复速度方法的测试平台,我们向AVA电影数据集注释说话者深度标签,并创建一个名为AVA-AVD的新基准。由于不同的场景,复杂的声学条件和完全偏离屏幕扬声器,该基准是挑战。然而,如何处理偏离屏幕和屏幕上的扬声器仍然是一个关键挑战。为了克服它,我们提出了一种新的视听关系网络(AVR-Net),它引入了有效的模态掩模,以基于可见性捕获辨别信息。实验表明,我们的方法不仅可以优于最先进的方法,而且可以更加强大,因为改变屏幕扬声器的比率。消融研究证明了拟议的AVR-NET和尤其是日复一化的模态掩模的优点。我们的数据和代码将公开可用。
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
视觉导航要求代理商遵循自然语言说明以达到特定目标。可见的环境和看不见的环境之间的巨大差异使代理商概括良好的挑战。先前的研究提出了数据增强方法,以明确或隐式地减轻数据偏见并提供概括的改进。但是,他们试图记住增强的轨迹,并在测试时忽略在看不见的环境下的分布变化。在本文中,我们提出了一个看不见的差异,预期视力和语言导航(戴维斯),该差异通过鼓励测试时间的视觉一致性来概括为看不见的环境。具体来说,我们设计了:1)半监督框架戴维斯(Davis),该框架利用类似的语义观测来利用视觉一致性信号。 2)一个两阶段的学习程序,鼓励适应测试时间分布。该框架增强了模仿和强化学习的基本混合物与动量形成对比,以鼓励在联合训练阶段和测试时间适应阶段对类似观察的稳定决策。广泛的实验表明,戴维斯在R2R和RXR基准上实现了与先前最先进的VLN基线相比,取得了模型不合命源性的改进。我们的源代码和数据是补充材料。
translated by 谷歌翻译
我们提出了Blenderbot 3,这是一个175B参数对话模型,能够通过访问Internet和长期内存进行开放域对话,并接受了大量用户定义的任务的培训。我们同时发布了模型权重和代码,还将模型部署在公共网页上,以与有机用户进行交互。该技术报告描述了该模型的构建方式(建筑,模型和培训计划)以及其部署的细节,包括安全机制。人类评估表明,它优于现有的开放域对话代理,包括其前身(Roller等,2021; Komeili等,2022)。最后,我们使用部署收集的数据详细介绍了持续学习的计划,该数据也将公开发布。因此,该研究计划的目标是使社区能够研究通过互动学习的不断改进的负责任的代理商。
translated by 谷歌翻译
无监督的生成的虚拟人类具有各种外观和动画姿势对于创建3D人体化身和其他AR/VR应用非常重要。现有方法要么仅限于刚性对象建模,要么不生成,因此无法合成高质量的虚拟人类并使它们进行动画化。在这项工作中,我们提出了Avatargen,这是第一种不仅可以具有不同外观的非刚性人类产生的方法,而且还可以完全控制姿势和观点,同时仅需要2D图像进行训练。具体而言,它通过利用粗糙的人体模型作为代理将观察空间扭曲到规范空间下的标准头像,将最近的3D甘斯扩展到了人类的衣服。为了建模非刚性动力学,它引入了一个变形网络,以学习规范空间中的姿势依赖性变形。为了提高生成的人类化身的几何质量,它利用签名距离字段作为几何表示,从而可以从几何学学习上的身体模型中进行更直接的正则化。从这些设计中受益,我们的方法可以生成具有高质量外观和几何形状建模的动画人体化身,从而极大地表现了先前的3D gan。此外,它有能力用于许多应用,例如单视重构造,复活和文本引导的合成。代码和预培训模型将可用。
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译