海洋正在经历前所未有的快速变化,在负责任管理所需的时空尺度上,视觉监测海洋生物群是一项艰巨的任务。由于研究界寻求基准,因此所需的数据收集的数量和速率迅速超过了我们处理和分析它们的能力。机器学习的最新进展可以对视觉数据进行快速,复杂的分析,但由于缺乏数据标准化,格式不足以及对大型标签数据集的需求,在海洋中取得了有限的成功。为了满足这一需求,我们构建了Fathomnet,这是一个开源图像数据库,该数据库标准化和汇总了经过精心策划的标记数据。 Fathomnet已被海洋动物,水下设备,碎片和其他概念的现有标志性和非偶像图像所播种,并允许分布式数据源的未来贡献。我们展示了如何使用Fathomnet数据在其他机构视频上训练和部署模型,以减少注释工作,并在与机器人车辆集成时启用自动跟踪水下概念。随着Fathomnet继续增长并结合了社区的更多标记数据,我们可以加速视觉数据以实现健康且可持续的全球海洋。
translated by 谷歌翻译
Machine learning model development and optimisation can be a rather cumbersome and resource-intensive process. Custom models are often more difficult to build and deploy, and they require infrastructure and expertise which are often costly to acquire and maintain. Machine learning product development lifecycle must take into account the need to navigate the difficulties of developing and deploying machine learning models. evoML is an AI-powered tool that provides automated functionalities in machine learning model development, optimisation, and model code optimisation. Core functionalities of evoML include data cleaning, exploratory analysis, feature analysis and generation, model optimisation, model evaluation, model code optimisation, and model deployment. Additionally, a key feature of evoML is that it embeds code and model optimisation into the model development process, and includes multi-objective optimisation capabilities.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Only limited studies and superficial evaluations are available on agents' behaviors and roles within a Multi-Agent System (MAS). We simulate a MAS using Reinforcement Learning (RL) in a pursuit-evasion (a.k.a predator-prey pursuit) game, which shares task goals with target acquisition, and we create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies. Using heatmaps of agents' positions (state-space variable) over time, we are able to categorize an RL-trained evader's behaviors. The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities, which allow us to classify an agent's behavior. This classification may aid in catching the (enemy) targets by enabling us to identify and predict their behaviors, and when extended to pursuers, this approach towards identifying teammates' behavior may allow agents to coordinate more effectively.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译
The UK COVID-19 Vocal Audio Dataset is designed for the training and evaluation of machine learning models that classify SARS-CoV-2 infection status or associated respiratory symptoms using vocal audio. The UK Health Security Agency recruited voluntary participants through the national Test and Trace programme and the REACT-1 survey in England from March 2021 to March 2022, during dominant transmission of the Alpha and Delta SARS-CoV-2 variants and some Omicron variant sublineages. Audio recordings of volitional coughs, exhalations, and speech were collected in the 'Speak up to help beat coronavirus' digital survey alongside demographic, self-reported symptom and respiratory condition data, and linked to SARS-CoV-2 test results. The UK COVID-19 Vocal Audio Dataset represents the largest collection of SARS-CoV-2 PCR-referenced audio recordings to date. PCR results were linked to 70,794 of 72,999 participants and 24,155 of 25,776 positive cases. Respiratory symptoms were reported by 45.62% of participants. This dataset has additional potential uses for bioacoustics research, with 11.30% participants reporting asthma, and 27.20% with linked influenza PCR test results.
translated by 谷歌翻译
Power dynamics in human-human communication can impact rapport-building and learning gains, but little is known about how power impacts human-agent communication. In this paper, we examine dominance behavior in utterances between middle-school students and a teachable robot as they work through math problems, as coded by Rogers and Farace's Relational Communication Control Coding Scheme (RCCCS). We hypothesize that relatively dominant students will show increased learning gains, as will students with greater dominance agreement with the robot. We also hypothesize that gender could be an indicator of difference in dominance behavior. We present a preliminary analysis of dominance characteristics in some of the transactions between robot and student. Ultimately, we hope to determine if manipulating the dominance behavior of a learning robot could support learning.
translated by 谷歌翻译
The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safe and accurate navigation of a needle through living tissue to an intra-tissue target is currently often challenging or infeasible due to the presence of anatomical obstacles in the tissue, high levels of uncertainty, and natural tissue motion (e.g., due to breathing). Medical robots capable of automating needle-based procedures in vivo have the potential to overcome these challenges and enable an enhanced level of patient care and safety. In this paper, we show the first medical robot that autonomously navigates a needle inside living tissue around anatomical obstacles to an intra-tissue target. Our system leverages an aiming device and a laser-patterned highly flexible steerable needle, a type of needle capable of maneuvering along curvilinear trajectories to avoid obstacles. The autonomous robot accounts for anatomical obstacles and uncertainty in living tissue/needle interaction with replanning and control and accounts for respiratory motion by defining safe insertion time windows during the breathing cycle. We apply the system to lung biopsy, which is critical in the diagnosis of lung cancer, the leading cause of cancer-related death in the United States. We demonstrate successful performance of our system in multiple in vivo porcine studies and also demonstrate that our approach leveraging autonomous needle steering outperforms a standard manual clinical technique for lung nodule access.
translated by 谷歌翻译
扬声器在彼此保持一致的过程中建立了融洽的关系。在指导域材料的同时,已经证明了与教师的融洽关系,以促进学习。过去关于教育领域的词汇一致性的工作都在量化对齐方式的措施和与代理对齐的相互作用的类型中都遭受了限制。在本文中,我们采用基于数据驱动的共享表达式概念(可能由多个单词组成)的对齐措施,并比较一对一的人类机器人(H-R)相互作用的对齐方式与协作人类人类的H-R部分中的对齐方式-Orobot(H-H-R)相互作用。我们发现,H-R设置中的学生与H-H-R设置相比,与可教的机器人保持一致,并且词汇一致性和融洽关系之间的关系比以前的理论和经验工作所预测的要复杂。
translated by 谷歌翻译
图卷积学习导致了各个领域的许多令人兴奋的发现。但是,在某些应用中,传统图不足以捕获数据的结构和复杂性。在这种情况下,多编码自然出现是可以嵌入复杂动力学的离散结构。在本文中,我们开发了有关多编码的卷积信息处理,并引入了卷积多编码神经网络(MGNN)。为了捕获每个多数边缘内外的信息传播的复杂动力学,我们正式化了一个卷积信号处理模型,从而定义了多格画上信号,过滤和频率表示的概念。利用该模型,我们开发了多个学习架构,包括采样程序以降低计算复杂性。引入的体系结构用于最佳无线资源分配和仇恨言语本地化任务,从而比传统的图形神经网络的性能提高了。
translated by 谷歌翻译