比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
Only limited studies and superficial evaluations are available on agents' behaviors and roles within a Multi-Agent System (MAS). We simulate a MAS using Reinforcement Learning (RL) in a pursuit-evasion (a.k.a predator-prey pursuit) game, which shares task goals with target acquisition, and we create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies. Using heatmaps of agents' positions (state-space variable) over time, we are able to categorize an RL-trained evader's behaviors. The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities, which allow us to classify an agent's behavior. This classification may aid in catching the (enemy) targets by enabling us to identify and predict their behaviors, and when extended to pursuers, this approach towards identifying teammates' behavior may allow agents to coordinate more effectively.
translated by 谷歌翻译
Power dynamics in human-human communication can impact rapport-building and learning gains, but little is known about how power impacts human-agent communication. In this paper, we examine dominance behavior in utterances between middle-school students and a teachable robot as they work through math problems, as coded by Rogers and Farace's Relational Communication Control Coding Scheme (RCCCS). We hypothesize that relatively dominant students will show increased learning gains, as will students with greater dominance agreement with the robot. We also hypothesize that gender could be an indicator of difference in dominance behavior. We present a preliminary analysis of dominance characteristics in some of the transactions between robot and student. Ultimately, we hope to determine if manipulating the dominance behavior of a learning robot could support learning.
translated by 谷歌翻译
We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion parameters, and sets new records on a broad range of representative vision downstream tasks, such as image recognition, video action recognition, object detection, instance segmentation and semantic segmentation without heavy supervised training. Moreover, we observe quantitative changes in scaling EVA result in qualitative changes in transfer learning performance that are not present in other models. For instance, EVA takes a great leap in the challenging large vocabulary instance segmentation task: our model achieves almost the same state-of-the-art performance on LVISv1.0 dataset with over a thousand categories and COCO dataset with only eighty categories. Beyond a pure vision encoder, EVA can also serve as a vision-centric, multi-modal pivot to connect images and text. We find initializing the vision tower of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with much fewer samples and less compute, providing a new direction for scaling up and accelerating the costly training of multi-modal foundation models. To facilitate future research, we release all the code and models at https://github.com/baaivision/EVA.
translated by 谷歌翻译
The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safe and accurate navigation of a needle through living tissue to an intra-tissue target is currently often challenging or infeasible due to the presence of anatomical obstacles in the tissue, high levels of uncertainty, and natural tissue motion (e.g., due to breathing). Medical robots capable of automating needle-based procedures in vivo have the potential to overcome these challenges and enable an enhanced level of patient care and safety. In this paper, we show the first medical robot that autonomously navigates a needle inside living tissue around anatomical obstacles to an intra-tissue target. Our system leverages an aiming device and a laser-patterned highly flexible steerable needle, a type of needle capable of maneuvering along curvilinear trajectories to avoid obstacles. The autonomous robot accounts for anatomical obstacles and uncertainty in living tissue/needle interaction with replanning and control and accounts for respiratory motion by defining safe insertion time windows during the breathing cycle. We apply the system to lung biopsy, which is critical in the diagnosis of lung cancer, the leading cause of cancer-related death in the United States. We demonstrate successful performance of our system in multiple in vivo porcine studies and also demonstrate that our approach leveraging autonomous needle steering outperforms a standard manual clinical technique for lung nodule access.
translated by 谷歌翻译
扬声器在彼此保持一致的过程中建立了融洽的关系。在指导域材料的同时,已经证明了与教师的融洽关系,以促进学习。过去关于教育领域的词汇一致性的工作都在量化对齐方式的措施和与代理对齐的相互作用的类型中都遭受了限制。在本文中,我们采用基于数据驱动的共享表达式概念(可能由多个单词组成)的对齐措施,并比较一对一的人类机器人(H-R)相互作用的对齐方式与协作人类人类的H-R部分中的对齐方式-Orobot(H-H-R)相互作用。我们发现,H-R设置中的学生与H-H-R设置相比,与可教的机器人保持一致,并且词汇一致性和融洽关系之间的关系比以前的理论和经验工作所预测的要复杂。
translated by 谷歌翻译
表格数据是信息时代的基础,并且已经进行了广泛的研究。最近的研究表明,基于神经的模型可有效学习表格数据的上下文表示。学习有效的上下文表示需要有意义的功能和大量数据。但是,当前的方法通常无法正确地从没有语义信息的功能中从功能中学习上下文表示。此外,由于数据集之间的差异,可以通过混合表格数据集扩大训练设置是很棘手的。为了解决这些问题,我们使用预先训练的语言模型来模拟表格数据,提出了一个新颖的框架PTAB。 PTAB通过三阶段处理来了解表格数据的上下文表示:模态转换(MT),掩盖语言微调(MF)和分类微调(CF)。我们使用预训练的模型(PTM)初始化模型,其中包含从大规模语言数据中学到的语义信息。因此,可以在微调阶段有效地学习上下文表示。此外,我们可以自然地混合文本化的表格数据,以扩大训练集以进一步改善表示形式学习。我们在八个流行的表格分类数据集上评估PTAB。实验结果表明,与最先进的基线(例如XGBoost)相比,我们的方法在监督的设置中取得了更好的AUC分数,并且在半监视设置下的方法优于对应方法。我们提出可视化结果,显示PTAB具有基于实例的解释性。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性进行性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体体面的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的纵向脑感状MRI,涉及随着时间的推移重复对患者进行成像,为临床医生提供了有用的信息,以监测疾病进展。仅在有限的应用中尝试预测未来的整个大脑MRI检查,例如在有限的应用中,例如在阿尔茨海默氏病中的健康衰老和结构性变性。在本文中,我们为MS Flair图像合成的深度学习体系结构提供了新的修改,以支持以灵活的连续方式支持纵向图像的预测。这是通过学习的转移卷积来实现的,该卷积将建模时间作为空间分布的阵列,在不同的空间位置具有可变的时间特性。因此,这种方法理论上可以对空间特定的时间依赖性大脑发育进行建模,从而支持在适当的物理位置(例如MS脑损伤部位)建模更快的生长。这种方法还支持临床医生用户定义预测考试应针对的未来。对未来成像的准确预测可以为临床医生提供潜在的患者预后,这可能有助于早期治疗和更好的预后。已经开发了四个不同的深度学习体系结构。 ISBI2015纵向MS数据集用于验证和比较我们提出的方法。结果表明,修改后的ACGAN可实现最佳性能并降低模型准确性的可变性。
translated by 谷歌翻译
统计能力是对假设检验的优点/强度的度量。正式地,如果存在真实的效果,则是检测效果的概率。因此,需要优化统计能力作为假设检验的某些参数的函数。但是,对于大多数假设检验,统计功率的显式功能形式是这些参数的函数是未知的,但是使用模拟实验可以计算给定值集值的统计功率。这些模拟实验通常在计算上很昂贵。因此,使用模拟开发整个统计功率歧管可能非常耗时。由此激励,我们提出了一种基于遗传算法的新型统计功率歧管框架。对于多个线性回归$ f $检验,我们表明所提出的算法/框架与蛮力方法相比,随着电源甲骨文的查询数量大大减少,统计功率歧管的速度要快得多。我们还表明,随着遗传算法的增加,学习流形的质量会提高。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体减弱的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的后续大脑FLAIR MRI为临床医生提供了有用的信息,以监测疾病进展。在这项研究中,我们提出了对生成对抗网络(GAN)的新颖修饰,以预测MS以固定时间间隔的MS预测未来病变特异性MRI。我们在鉴别器中使用受监督的引导注意力和扩张卷积,该歧视者支持对生成图像是否实现的明智预测,这是基于对病变区域的关注,这反过来又有可能帮助改善生成器以预测病变区域将来的考试更准确。我们将我们的方法与几个基线和一种最先进的CF-Sagan模型进行了比较[1]。总之,我们的结果表明,与其他总体性能相似的模型相比,所提出的方法可实现更高的准确性,并减少病变区域预测误差的标准偏差。
translated by 谷歌翻译