Recent work has shown the benefits of synthetic data for use in computer vision, with applications ranging from autonomous driving to face landmark detection and reconstruction. There are a number of benefits of using synthetic data from privacy preservation and bias elimination to quality and feasibility of annotation. Generating human-centered synthetic data is a particular challenge in terms of realism and domain-gap, though recent work has shown that effective machine learning models can be trained using synthetic face data alone. We show that this can be extended to include the full body by building on the pipeline of Wood et al. to generate synthetic images of humans in their entirety, with ground-truth annotations for computer vision applications. In this report we describe how we construct a parametric model of the face and body, including articulated hands; our rendering pipeline to generate realistic images of humans based on this body model; an approach for training DNNs to regress a dense set of landmarks covering the entire body; and a method for fitting our body model to dense landmarks predicted from multiple views.
translated by 谷歌翻译
地标通常在面部分析中起关键作用,但是仅凭稀疏地标就不能代表身份或表达的许多方面。因此,为了更准确地重建面,地标通常与其他信号(如深度图像或技术)相结合,例如可区分渲染。我们可以通过使用更多地标使事情变得简单吗?在答案中,我们提出了第一种准确地预测10倍地标的方法,覆盖整个头部,包括眼睛和牙齿。这是使用合成培训数据来完成的,该数据保证了完美的地标注释。通过将可变形的模型拟合到这些密集的地标,我们可以在野外实现单眼3D面重建的最新结果。我们表明,密集的地标是通过在单眼和多视图方案中展示准确和表现力的面部绩效捕获来整合跨帧面部形状信息的理想信号。这种方法也非常有效:我们可以预测密集的地标,并在单个CPU线程上以超过150fps的速度适合我们的3D面模型。请参阅我们的网站:https://microsoft.github.io/denselandmarks/。
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
Human operators in human-robot teams are commonly perceived to be critical for mission success. To explore the direct and perceived impact of operator input on task success and team performance, 16 real-world missions (10 hrs) were conducted based on the DARPA Subterranean Challenge. These missions were to deploy a heterogeneous team of robots for a search task to locate and identify artifacts such as climbing rope, drills and mannequins representing human survivors. Two conditions were evaluated: human operators that could control the robot team with state-of-the-art autonomy (Human-Robot Team) compared to autonomous missions without human operator input (Robot-Autonomy). Human-Robot Teams were often in directed autonomy mode (70% of mission time), found more items, traversed more distance, covered more unique ground, and had a higher time between safety-related events. Human-Robot Teams were faster at finding the first artifact, but slower to respond to information from the robot team. In routine conditions, scores were comparable for artifacts, distance, and coverage. Reasons for intervention included creating waypoints to prioritise high-yield areas, and to navigate through error-prone spaces. After observing robot autonomy, operators reported increases in robot competency and trust, but that robot behaviour was not always transparent and understandable, even after high mission performance.
translated by 谷歌翻译
Entrainment is the phenomenon by which an interlocutor adapts their speaking style to align with their partner in conversations. It has been found in different dimensions as acoustic, prosodic, lexical or syntactic. In this work, we explore and utilize the entrainment phenomenon to improve spoken dialogue systems for voice assistants. We first examine the existence of the entrainment phenomenon in human-to-human dialogues in respect to acoustic feature and then extend the analysis to emotion features. The analysis results show strong evidence of entrainment in terms of both acoustic and emotion features. Based on this findings, we implement two entrainment policies and assess if the integration of entrainment principle into a Text-to-Speech (TTS) system improves the synthesis performance and the user experience. It is found that the integration of the entrainment principle into a TTS system brings performance improvement when considering acoustic features, while no obvious improvement is observed when considering emotion features.
translated by 谷歌翻译
Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy - the adsorption energy - for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration, within a 0.1 eV threshold, 86.63% of the time, while achieving a 1387x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 87,045 unique configurations.
translated by 谷歌翻译
Named entity recognition models (NER), are widely used for identifying named entities (e.g., individuals, locations, and other information) in text documents. Machine learning based NER models are increasingly being applied in privacy-sensitive applications that need automatic and scalable identification of sensitive information to redact text for data sharing. In this paper, we study the setting when NER models are available as a black-box service for identifying sensitive information in user documents and show that these models are vulnerable to membership inference on their training datasets. With updated pre-trained NER models from spaCy, we demonstrate two distinct membership attacks on these models. Our first attack capitalizes on unintended memorization in the NER's underlying neural network, a phenomenon NNs are known to be vulnerable to. Our second attack leverages a timing side-channel to target NER models that maintain vocabularies constructed from the training data. We show that different functional paths of words within the training dataset in contrast to words not previously seen have measurable differences in execution time. Revealing membership status of training samples has clear privacy implications, e.g., in text redaction, sensitive words or phrases to be found and removed, are at risk of being detected in the training dataset. Our experimental evaluation includes the redaction of both password and health data, presenting both security risks and privacy/regulatory issues. This is exacerbated by results that show memorization with only a single phrase. We achieved 70% AUC in our first attack on a text redaction use-case. We also show overwhelming success in the timing attack with 99.23% AUC. Finally we discuss potential mitigation approaches to realize the safe use of NER models in light of the privacy and security implications of membership inference attacks.
translated by 谷歌翻译
高斯工艺(GPS)是贝叶斯非参数模型,由于其准确性和天然不确定性定量(UQ),因此在各种应用中流行。调整GP超参数对于确保预测准确性和不确定性的有效性至关重要。独特地估计多个超参数,例如Matern内核也可能是一个重大挑战。此外,大规模数据集中的培训GPS是一个高度活跃的研究领域:传统的最大似然超参数训练需要二次记忆以形成协方差矩阵并具有立方训练的复杂性。为了解决可扩展的超参数调整问题,我们提出了一种新型算法,该算法估算了Matern内核中的平滑度和长度尺度参数,以提高所得预测不确定性的鲁棒性。使用与超参数估计算法MUYGPS提供的计算框架中的合并预测算法相似的新型损失函数,我们在数值实验中证明了高度可伸缩性,同时保持了高度可伸缩性。
translated by 谷歌翻译
在这项工作中,我们提出了一种使用位置偏差模型来确定性记录策略的新型方法。该技术大大扩大了可以使用OPE的策略。我们使用有关行业规模数据的两个不同的实验来验证该技术。OPE结果显然与在线结果密切相关,并且存在一些持续的偏见。估算器要求检查模型是对真实用户行为的合理准确近似。
translated by 谷歌翻译
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中,该假设将被人类观看。随着深度神经网络在解决计算机视觉任务方面的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探索并总结了计算机视觉任务的视频编码和新兴视频编码标准,机器的视频编码。
translated by 谷歌翻译