来自不同摄像头设备的光学相干断层扫描(OCT)成像会导致挑战域的变化,并可能导致机器学习模型的精度严重下降。在这项工作中,我们引入了基于单数值分解(SVDNA)的最小噪声适应方法,以克服视网膜OCT成像中三个不同设备制造商的目标域之间的域间隙。我们的方法利用噪声结构的差异成功地弥合了不同OCT设备之间的域间隙,并将样式从未标记的目标域图像转移到可用手动注释的源图像。我们演示了该方法尽管简单,但如何比较甚至胜过最先进的无监督域适应方法,用于在公共OCT数据集中进行语义细分。 SVDNA可以将仅几行代码集成到任何网络的增强管道中,这些网络与许多最新的域适应方法形成鲜明对比,这些方法通常需要更改基础模型体系结构或训练单独的样式转移模型。 SVDNA的完整代码实现可在https://github.com/valentinkoch/svdna上获得。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Single-cell reference atlases are large-scale, cell-level maps that capture cellular heterogeneity within an organ using single cell genomics. Given their size and cellular diversity, these atlases serve as high-quality training data for the transfer of cell type labels to new datasets. Such label transfer, however, must be robust to domain shifts in gene expression due to measurement technique, lab specifics and more general batch effects. This requires methods that provide uncertainty estimates on the cell type predictions to ensure correct interpretation. Here, for the first time, we introduce uncertainty quantification methods for cell type classification on single-cell reference atlases. We benchmark four model classes and show that currently used models lack calibration, robustness, and actionable uncertainty scores. Furthermore, we demonstrate how models that quantify uncertainty are better suited to detect unseen cell types in the setting of atlas-level cell type transfer.
translated by 谷歌翻译
基于对抗斑块的攻击旨在欺骗一个有意产生的噪声的神经网络,该网络集中在输入图像的特定区域中。在这项工作中,我们对不同的贴片生成参数进行了深入的分析,包括初始化,贴剂大小,尤其是在训练过程中将贴剂放置在图像中。我们专注于对象消失的攻击,并以Yolov3作为白色盒子设置中的攻击的模型运行实验,并使用COCO数据集中的图像。我们的实验表明,在训练期间,将斑块插入大小增加的窗口内,与固定位置相比,攻击强度显着提高。当斑块在训练过程中随机定位时,获得了最佳结果,而贴片位置则在批处理中也有所不同。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译
我们描述了一种新型有损压缩方法,称为DIFFC,该方法基于无条件扩散生成模型。与依靠转换编码和量化来限制传输信息的现代压缩方案不同,DIFFC依赖于高斯噪声损坏的像素的有效通信。我们实施了概念证明,并发现尽管缺乏编码器变换,但它的工作原理表现出色,超过了Imagenet 64x64上最先进的生成压缩方法。 DIFFC仅使用单个模型在任意比特率上编码和DENOISE损坏的像素。该方法进一步提供了对渐进编码的支持,即从部分位流进行解码。我们执行速率分析,以更深入地了解其性能,为多元高斯数据以及一般分布的初始结果提供分析结果。此外,我们表明,基于流动的重建可以比祖先采样在高比特率上获得3 dB的增长。
translated by 谷歌翻译
当前用于多模式任务的体系结构,例如视觉问题回答的较高复杂性。结果,这些架构很难训练,需要高度的计算资源。为了解决这些问题,我们提出了一个基于夹的体系结构,该体系结构不需要对功能提取器进行任何微调。简单的线性分类器用于图像和文本编码器的串联特征。在训练过程中,添加了辅助损失,该辅助损失可在答案类型上运行。然后将结果分类用作答案类选择的注意门。在Vizwiz 2022视觉问题回答挑战中,我们在任务1上获得了60.15%的准确性:预测任务2:预测视觉问题的可回答性的视觉问题和AP得分为83.78%。
translated by 谷歌翻译
$ \ mathbf {perive} $:使用人工智能(AI)到:(1)从相对较大的人群中利用视神经头(ONH)的生物力学知识; (2)评估ONH的单个光学相干断层扫描(OCT)扫描的稳健性; (3)确定哪些关键的三维(3D)结构特征使给定的ONH稳健。 $ \ Mathbf {Design} $:回顾性横断面研究。 $ \ mathbf {Methods} $:316个受试者通过Ophthalmo-Dynamometry在急性眼内和之后与OCT成像。然后将IOP诱导的椎板胶状变形映射为3D,并用于对ONH进行分类。 LC变形高于4%的人被认为是脆弱的,而变形较低的人则较低4%。从这些数据中学习,我们比较了三种AI算法,以严格地从基线(未呈现的)OCT卷中预测鲁棒性:(1)随机森林分类器; (2)自动编码器; (3)动态图CNN(DGCNN)。后一种算法还使我们能够确定哪些关键的3D结构特征使给定的智能稳定。 $ \ mathbf {结果} $:所有3种方法都能够单独预测3D结构信息的稳健性,而无需执行生物力学测试。 DGCNN(接收器操作曲线下的区域[AUC]:0.76 $ \ pm $ 0.08)的表现优于自动编码器(AUC:0.70 $ \ pm $ 0.07)和随机森林分类器(AUC:0.69 $ \ pm $ 0.05)。有趣的是,为了评估稳健性,DGCNN主要使用了巩膜和LC插入部位的信息。 $ \ mathbf {结论} $:我们提出了一种AI驱动的方法,可以仅从ONH的单个OCT扫描中评估给定ONH的稳健性,而无需进行生物力学测试。纵向研究应确定ONH鲁棒性是否可以帮助我们确定快速的视野损失进展者。
translated by 谷歌翻译
Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery.
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译