随着在线医疗的激增,需要对患者生命力进行远程监测。这可以通过从面部视频中计算生命体征的远程照相学(RPPG)技术来促进。它涉及处理视频帧以获取皮肤像素,从中提取心脏数据并应用信号处理过滤器以提取血量脉冲(BVP)信号。将不同的算法应用于BVP信号以估计各种生命体征。我们实施了一个Web应用程序框架,以测量一个人的心率(HR),心率变异性(HRV),氧饱和度(SPO2),呼吸率(RR),血压(BP)和面部视频的压力。RPPG技术对照明和运动变化高度敏感。Web应用程序指导用户减少由于这些变化而减少噪音,从而产生清洁器的BVP信号。框架的准确性和鲁棒性在志愿者的帮助下得到了验证。
translated by 谷歌翻译
知识图嵌入(KGE)方法已从广泛的AI社区(包括自然语言处理(NLP))中引起了极大的关注,用于文本生成,分类和上下文诱导。用少数维度嵌入大量的相互关系,需要在认知和计算方面进行适当的建模。最近,开发了有关自然语言的认知和计算方面的许多目标功能。其中包括最新的线性方法,双线性,具有歧管的内核,投影 - 空间和类似推断。但是,这种模型的主要挑战在于它们的损失函数,将关系嵌入的维度与相应的实体维度相关联。当错误估计对应物时,这导致对实体之间相应关系的预测不准确。 Bordes等人发表的Proje Kge由于计算复杂性低和模型改进的高潜力,在所有翻译和双线性相互作用的同时,在捕获实体非线性的同时,都改善了这项工作。基准知识图(KGS)(例如FB15K和WN18)的实验结果表明,所提出的方法使用线性和双线性方法以及其他最新功能的方法在实体预测任务中的最新模型优于最先进的模型。另外,为该模型提出了平行处理结构,以提高大型kg的可伸缩性。还解释了不同自适应聚类和新提出的抽样方法的影响,这被证明可以有效提高知识图完成的准确性。
translated by 谷歌翻译
远程光插图学(RPPG)是一种快速,有效,廉价和方便的方法,用于收集生物识别数据,因为它可以使用面部视频来估算生命体征。事实证明,远程非接触式医疗服务供应在COVID-19大流行期间是可怕的必要性。我们提出了一个端到端框架,以根据用户的视频中的RPPG方法来衡量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP)(BP)(BP)用智能手机相机捕获的脸。我们以实时的基于深度学习的神经网络模型来提取面部标志。通过使用预测的面部标志来提取多个称为利益区域(ROI)的面部斑块(ROI)。应用了几个过滤器,以减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。我们使用两个公共RPPG数据集培训和验证了机器学习模型,即Tokyotech RPPG和脉搏率检测(PURE)数据集,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73和3.95 BEATS- beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-s-s-s-s-s-y-peats-beats-beats-beats-ship-s-s-s-in-chin-p-in-in-in-in-in-c--in-in-c-le-in-in- -t一下制。每分钟(bpm),b)分别为HRV,分别为18.55和25.03 ms,c)对于SPO2,纯数据集上的MAE为1.64。我们在现实生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49 bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们的模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到6.7 mmHg,舒张压(DBP)的MAE为9.6 mmHg。
translated by 谷歌翻译
合作感允许连接的自动驾驶汽车(CAV)与附近的其他骑士相互作用,以增强对周围物体的感知以提高安全性和可靠性。它可以弥补常规车辆感知的局限性,例如盲点,低分辨率和天气影响。合作感知中间融合方法的有效特征融合模型可以改善特征选择和信息聚集,以进一步提高感知精度。我们建议具有可训练的特征选择模块的自适应特征融合模型。我们提出的模型之一是通过空间自适应特征融合(S-Adafusion)在OPV2V数据集的两个子集上的所有其他最先进的模型:默认的Carla Towns用于车辆检测和用于域适应的Culver City。此外,先前的研究仅测试了合作感的车辆检测。但是,行人在交通事故中更有可能受到重伤。我们使用CODD数据集评估了车辆和行人检测的合作感的性能。与CODD数据集中的车辆和行人检测相比,我们的架构达到的平均精度(AP)高。实验表明,与常规感知过程相比,合作感也可以提高行人检测准确性。
translated by 谷歌翻译