Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Self-supervised pre-trained transformers have improved the state of the art on a variety of speech tasks. Due to the quadratic time and space complexity of self-attention, they usually operate at the level of relatively short (e.g., utterance) segments. In this paper, we study the use of context, i.e., surrounding segments, during fine-tuning and propose a new approach called context-aware fine-tuning. We attach a context module on top of the last layer of a pre-trained model to encode the whole segment into a context embedding vector which is then used as an additional feature for the final prediction. During the fine-tuning stage, we introduce an auxiliary loss that encourages this context embedding vector to be similar to context vectors of surrounding segments. This allows the model to make predictions without access to these surrounding segments at inference time and requires only a tiny overhead compared to standard fine-tuned models. We evaluate the proposed approach using the SLUE and Librilight benchmarks for several downstream tasks: Automatic speech recognition (ASR), named entity recognition (NER), and sentiment analysis (SA). The results show that context-aware fine-tuning not only outperforms a standard fine-tuning baseline but also rivals a strong context injection baseline that uses neighboring speech segments during inference.
translated by 谷歌翻译
Natural language processing (NLP) sees rich mobile applications. To support various language understanding tasks, a foundation NLP model is often fine-tuned in a federated, privacy-preserving setting (FL). This process currently relies on at least hundreds of thousands of labeled training samples from mobile clients; yet mobile users often lack willingness or knowledge to label their data. Such an inadequacy of data labels is known as a few-shot scenario; it becomes the key blocker for mobile NLP applications. For the first time, this work investigates federated NLP in the few-shot scenario (FedFSL). By retrofitting algorithmic advances of pseudo labeling and prompt learning, we first establish a training pipeline that delivers competitive accuracy when only 0.05% (fewer than 100) of the training data is labeled and the remaining is unlabeled. To instantiate the workflow, we further present a system FFNLP, addressing the high execution cost with novel designs. (1) Curriculum pacing, which injects pseudo labels to the training workflow at a rate commensurate to the learning progress; (2) Representational diversity, a mechanism for selecting the most learnable data, only for which pseudo labels will be generated; (3) Co-planning of a model's training depth and layer capacity. Together, these designs reduce the training delay, client energy, and network traffic by up to 46.0$\times$, 41.2$\times$ and 3000.0$\times$, respectively. Through algorithm/system co-design, FFNLP demonstrates that FL can apply to challenging settings where most training samples are unlabeled.
translated by 谷歌翻译
Transformer-based pre-trained models have become the de-facto solution for NLP tasks. Fine-tuning such pre-trained models for downstream tasks often requires tremendous amount of data that is both private and labeled. However, in reality: 1) such private data cannot be collected and is distributed across mobile devices, and 2) well-curated labeled data is scarce. To tackle those issues, we first define a data generator for federated few-shot learning tasks, which encompasses the quantity and distribution of scarce labeled data in a realistic setting. Then we propose AUG-FedPrompt, a prompt-based federated learning algorithm that carefully annotates abundant unlabeled data for data augmentation. AUG-FedPrompt can perform on par with full-set fine-tuning with very few initial labeled data.
translated by 谷歌翻译
预训练会产生对各种下游任务有效的表示,但是目前尚不清楚预训练的有效收益必不可少的特性。值得注意的是,最近的工作表明,即使对合成任务进行预训练也可以在下游任务中取得显着增长。在这项工作中,我们进行了三个实验,可以迭代地简化预训练,并表明简化仍然保留了其大部分收益。首先,在先前的工作中,我们对六个下游任务的三种现有合成预训练方法进行系统评估。我们发现最好的合成预训练方法是石灰,平均获得了自然预训练的收益的67美元\%$。其次,令我们惊讶的是,我们发现由设定功能定义的简单且通用的合成任务进行预培训可实现$ 65 \%的好处,几乎是匹配的石灰。第三,我们发现仅使用合成预培训的参数统计数据可以实现$ 39 \%的利益。我们在https://github.com/felixzli/synthetic_pretraining上发布源代码。
translated by 谷歌翻译
随着增强的焦点和虚拟现实应用(XR)来说,可以对可以将物体从图像和视频升力到适合各种相关3D任务的表示的算法。 XR设备和应用程序的大规模部署意味着我们不能仅仅依赖于监督学习,因为收集和注释现实世界中无限各种物体的数据是不可行的。我们提出了一种弱监督的方法,能够将物体的单个图像分解成形状(深度和正规),材料(反射率,反射率和发光)和全局照明参数。对于培训,该方法仅依赖于训练对象的粗略初始形状估计来引导学习过程。这种形状监督可以例如从预先预制的深度网络或 - 从传统的结构 - 来自运动管道中的普罗维尔或 - 更慷慨地实现。在我们的实验中,我们表明该方法可以将2D图像成功地将2D图像成功渲染为分解的3D表示并推广到未经证明的对象类别。由于缺乏频繁的评估因缺乏地面真理数据而困难,我们还介绍了一种允许定量评估的照片 - 现实的合成测试集。
translated by 谷歌翻译
口语语言理解(SLU)任务涉及从语音音频信号映射到语义标签。鉴于此类任务的复杂性,可能预期良好的性能需要大量标记的数据集,这很难为每个新任务和域收集。但是,最近的自我监督讲话表现的进步使得考虑使用有限标记的数据学习SLU模型是可行的。在这项工作中,我们专注于低资源讨论(ner)并解决问题:超越自我监督的预培训,我们如何使用未为任务注释的外部语音和/或文本数据?我们借鉴了各种方法,包括自我训练,知识蒸馏和转移学习,并考虑其对端到端模型和管道(语音识别后跟文本型号)的适用性。我们发现,这些方法中的几种方法可以在资源受限的环境中提高绩效,超出了训练有素的表示的福利。与事先工作相比,我们发现改进的F1分数高达16%。虽然最好的基线模型是一种管道方法,但使用外部数据时最终通过端到端模型实现的最佳性能。我们提供了详细的比较和分析,例如,端到端模型能够专注于更加立列人的单词。
translated by 谷歌翻译
通过共享数据集和基准,已经促进了语音处理的进展。历史上,这些都集中在自动语音识别(ASR),扬声器标识或其他较低级别的任务上。兴趣在更高层次的口语中越来越多,理解任务,包括使用端到端模型,但是此类任务的注释数据集较少。与此同时,最近的工作显示了预先培训通用表示的可能性,然后使用相对较少标记的数据进行微调的多个任务。我们建议为口语语言理解(屠宰)创建一套基准任务,由有限尺寸标记的培训集和相应的评估集组成。该资源将允许研究界跟踪进度,评估高级任务的预先接受预期的表示,并研究开放的问题,例如管道与端到端方法的实用性。我们介绍了雪橇基准套件的第一阶段,包括指定实体识别,情感分析和相应数据集上的ASR。我们专注于自然产生的(未读取或综合)语音和自由可用的数据集。我们为VoxceReb和Voxpopuli数据集的子集提供新的转录和注释,基线模型的评估指标和结果,以及重现基线的开源工具包,并评估新模型。
translated by 谷歌翻译
神经记录的进展现在在前所未有的细节中研究神经活动的机会。潜在的变量模型(LVMS)是用于分析各种神经系统和行为的丰富活动的有希望的工具,因为LVM不依赖于活动与外部实验变量之间的已知关系。然而,目前缺乏标准化目前阻碍了对神经元群体活性的LVM进行的进展,导致采用临时方式进行和比较方法。为协调这些建模工作,我们为神经人群活动的潜在变量建模介绍了基准套件。我们从认知,感官和机动领域策划了四种神经尖峰活动的数据集,以促进适用于这些地区各地的各种活动的模型。我们将无监督的评估视为用于评估数据集的模型的共同框架,并应用几个显示基准多样性的基线。我们通过评估释放此基准。 http://neurallatents.github.io.
translated by 谷歌翻译