自50年代后期以来,当发射第一个人造卫星时,居民太空物品(RSO)的数量已稳步增加。据估计,目前约有100万个大于1厘米的物体正在绕地球绕,只有30,000个,大于10厘米,目前正在跟踪。为了避免碰撞的链反应,称为凯斯勒综合征,必须准确跟踪和预测空间碎片和卫星的轨道是必不可少的。当前基于物理的方法在7天的预测中存在误差,在考虑大部分小于1米的空间碎片时,这是不够的。通常,这种故障是由于轨迹开始时空间对象状态周围的不确定性,在环境条件(例如大气阻力)中的预测错误以及RSO的质量或几何形状等特定的未知特征。利用数据驱动的技术,即机器学习,可以提高轨道预测准确性:通过得出未测量的对象的特征,改善非保守力的效果,并通过深度学习模型具有高度复杂的非复杂性非 - 的卓越抽象能力来建模线性系统。在这项调查中,我们概述了该领域正在完成的当前工作。
translated by 谷歌翻译
急诊部门(EDS)是葡萄牙国家卫生服务局的基本要素,可作为具有多样化和非常严重医疗问题的用户的切入点。由于ED的固有特征;预测使用服务的患者数量特别具有挑战性。富裕和医疗专业人员人数之间的不匹配可能会导致提供的服务质量下降,并造成对整个医院产生影响的问题,并从其他部门征用医疗保健工作者以及推迟手术。 。 ED人满为患的部分是由非紧急患者驱动的,尽管没有医疗紧急情况,但诉诸于紧急服务,几乎占每日患者总数的一半。本文描述了一种新颖的深度学习体系结构,即时间融合变压器,该结构使用日历和时间序列协变量来预测预测间隔和4周期间的点预测。我们得出的结论是,可以预测葡萄牙健康区域(HRA)(HRA)的平均绝对百分比误差(MAPE)和均方根误差(RMSE)为84.4102人/天的平均绝对百分比误差(MAPE)。本文显示了支持使用静态和时间序列协变量的多元方法的经验证据,同时超越了文献中常见的其他模型。
translated by 谷歌翻译
空间碎片是太空勘探中的一个主要问题。国际机构不断监控大量的轨道对象数据库,并以结合数据消息的形式发出警告。卫星运营商的一个重要问题是估计新信息将到达,以便他们可以及时反应,但避免卫星演习。我们提出了一个统计学习模型的消息到达过程,允许我们回答两个重要问题:(1)下一个指定的时间间隔有任何新的消息吗?(2)下一条消息到达的不确定性何时到达?我们的贝叶斯泊松过程模型的问题(2)的平均预测误差小于在50K关闭遇到事件的测试集中超过4小时的基线。
translated by 谷歌翻译
Numerous works use word embedding-based metrics to quantify societal biases and stereotypes in texts. Recent studies have found that word embeddings can capture semantic similarity but may be affected by word frequency. In this work we study the effect of frequency when measuring female vs. male gender bias with word embedding-based bias quantification methods. We find that Skip-gram with negative sampling and GloVe tend to detect male bias in high frequency words, while GloVe tends to return female bias in low frequency words. We show these behaviors still exist when words are randomly shuffled. This proves that the frequency-based effect observed in unshuffled corpora stems from properties of the metric rather than from word associations. The effect is spurious and problematic since bias metrics should depend exclusively on word co-occurrences and not individual word frequencies. Finally, we compare these results with the ones obtained with an alternative metric based on Pointwise Mutual Information. We find that this metric does not show a clear dependence on frequency, even though it is slightly skewed towards male bias across all frequencies.
translated by 谷歌翻译
Reinforcement learning is a machine learning approach based on behavioral psychology. It is focused on learning agents that can acquire knowledge and learn to carry out new tasks by interacting with the environment. However, a problem occurs when reinforcement learning is used in critical contexts where the users of the system need to have more information and reliability for the actions executed by an agent. In this regard, explainable reinforcement learning seeks to provide to an agent in training with methods in order to explain its behavior in such a way that users with no experience in machine learning could understand the agent's behavior. One of these is the memory-based explainable reinforcement learning method that is used to compute probabilities of success for each state-action pair using an episodic memory. In this work, we propose to make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks that need to be first addressed to solve a more complex task. The end goal is to verify if it is possible to provide to the agent the ability to explain its actions in the global task as well as in the sub-tasks. The results obtained showed that it is possible to use the memory-based method in hierarchical environments with high-level tasks and compute the probabilities of success to be used as a basis for explaining the agent's behavior.
translated by 谷歌翻译
In recent years, unmanned aerial vehicle (UAV) related technology has expanded knowledge in the area, bringing to light new problems and challenges that require solutions. Furthermore, because the technology allows processes usually carried out by people to be automated, it is in great demand in industrial sectors. The automation of these vehicles has been addressed in the literature, applying different machine learning strategies. Reinforcement learning (RL) is an automation framework that is frequently used to train autonomous agents. RL is a machine learning paradigm wherein an agent interacts with an environment to solve a given task. However, learning autonomously can be time consuming, computationally expensive, and may not be practical in highly-complex scenarios. Interactive reinforcement learning allows an external trainer to provide advice to an agent while it is learning a task. In this study, we set out to teach an RL agent to control a drone using reward-shaping and policy-shaping techniques simultaneously. Two simulated scenarios were proposed for the training; one without obstacles and one with obstacles. We also studied the influence of each technique. The results show that an agent trained simultaneously with both techniques obtains a lower reward than an agent trained using only a policy-based approach. Nevertheless, the agent achieves lower execution times and less dispersion during training.
translated by 谷歌翻译
The widespread use of information and communication technology (ICT) over the course of the last decades has been a primary catalyst behind the digitalization of power systems. Meanwhile, as the utilization rate of the Internet of Things (IoT) continues to rise along with recent advancements in ICT, the need for secure and computationally efficient monitoring of critical infrastructures like the electrical grid and the agents that participate in it is growing. A cyber-physical system, such as the electrical grid, may experience anomalies for a number of different reasons. These may include physical defects, mistakes in measurement and communication, cyberattacks, and other similar occurrences. The goal of this study is to emphasize what the most common incidents are with power systems and to give an overview and classification of the most common ways to find problems, starting with the consumer/prosumer end working up to the primary power producers. In addition, this article aimed to discuss the methods and techniques, such as artificial intelligence (AI) that are used to identify anomalies in the power systems and markets.
translated by 谷歌翻译
Vision Transformers (ViTs) have become a dominant paradigm for visual representation learning with self-attention operators. Although these operators provide flexibility to the model with their adjustable attention kernels, they suffer from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy of the ViT layers, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called lightweight structure-aware attention (LiSA), which has a better representation power with log-linear complexity. Our operator learns structural patterns by using a set of relative position embeddings (RPEs). To achieve log-linear complexity, the RPEs are approximated with fast Fourier transforms. Our experiments and ablation studies demonstrate that ViTs based on the proposed operator outperform self-attention and other existing operators, achieving state-of-the-art results on ImageNet, and competitive results on other visual understanding benchmarks such as COCO and Something-Something-V2. The source code of our approach will be released online.
translated by 谷歌翻译
Explainable artificial intelligence is proposed to provide explanations for reasoning performed by an Artificial Intelligence. There is no consensus on how to evaluate the quality of these explanations, since even the definition of explanation itself is not clear in the literature. In particular, for the widely known Local Linear Explanations, there are qualitative proposals for the evaluation of explanations, although they suffer from theoretical inconsistencies. The case of image is even more problematic, where a visual explanation seems to explain a decision while detecting edges is what it really does. There are a large number of metrics in the literature specialized in quantitatively measuring different qualitative aspects so we should be able to develop metrics capable of measuring in a robust and correct way the desirable aspects of the explanations. In this paper, we propose a procedure called REVEL to evaluate different aspects concerning the quality of explanations with a theoretically coherent development. This procedure has several advances in the state of the art: it standardizes the concepts of explanation and develops a series of metrics not only to be able to compare between them but also to obtain absolute information regarding the explanation itself. The experiments have been carried out on image four datasets as benchmark where we show REVEL's descriptive and analytical power.
translated by 谷歌翻译
In this work, we estimate the depth in which domestic waste are located in space from a mobile robot in outdoor scenarios. As we are doing this calculus on a broad range of space (0.3 - 6.0 m), we use RGB-D camera and LiDAR fusion. With this aim and range, we compare several methods such as average, nearest, median and center point, applied to those which are inside a reduced or non-reduced Bounding Box (BB). These BB are obtained from segmentation and detection methods which are representative of these techniques like Yolact, SOLO, You Only Look Once (YOLO)v5, YOLOv6 and YOLOv7. Results shown that, applying a detection method with the average technique and a reduction of BB of 40%, returns the same output as segmenting the object and applying the average method. Indeed, the detection method is faster and lighter in comparison with the segmentation one. The committed median error in the conducted experiments was 0.0298 ${\pm}$ 0.0544 m.
translated by 谷歌翻译