With the rise of AI and automation, moral decisions are being put into the hands of algorithms that were formerly the preserve of humans. In autonomous driving, a variety of such decisions with ethical implications are made by algorithms for behavior and trajectory planning. Therefore, we present an ethical trajectory planning algorithm with a framework that aims at a fair distribution of risk among road users. Our implementation incorporates a combination of five essential ethical principles: minimization of the overall risk, priority for the worst-off, equal treatment of people, responsibility, and maximum acceptable risk. To the best of the authors' knowledge, this is the first ethical algorithm for trajectory planning of autonomous vehicles in line with the 20 recommendations from the EU Commission expert group and with general applicability to various traffic situations. We showcase the ethical behavior of our algorithm in selected scenarios and provide an empirical analysis of the ethical principles in 2000 scenarios. The code used in this research is available as open-source software.
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like "opening the microwave" or "turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
translated by 谷歌翻译
We formulate grasp learning as a neural field and present Neural Grasp Distance Fields (NGDF). Here, the input is a 6D pose of a robot end effector and output is a distance to a continuous manifold of valid grasps for an object. In contrast to current approaches that predict a set of discrete candidate grasps, the distance-based NGDF representation is easily interpreted as a cost, and minimizing this cost produces a successful grasp pose. This grasp distance cost can be incorporated directly into a trajectory optimizer for joint optimization with other costs such as trajectory smoothness and collision avoidance. During optimization, as the various costs are balanced and minimized, the grasp target is allowed to smoothly vary, as the learned grasp field is continuous. In simulation benchmarks with a Franka arm, we find that joint grasping and planning with NGDF outperforms baselines by 63% execution success while generalizing to unseen query poses and unseen object shapes. Project page: https://sites.google.com/view/neural-grasp-distance-fields.
translated by 谷歌翻译
自我监督模型在机器学习(ML)中越来越普遍,因为它们减少了对昂贵标签数据的需求。由于它们在下游应用程序中的多功能性,它们越来越多地用作通过公共API暴露的服务。同时,由于它们输出的向量表示的高维度,这些编码器模型特别容易受到模型窃取攻击的影响。然而,编码器仍然没有防御:窃取攻击的现有缓解策略集中在监督学习上。我们介绍了一个新的数据集推理防御,该防御使用受害者编码器模型的私人培训集将其所有权归因于窃取的情况。直觉是,如果受害者从受害者那里窃取了编码器的培训数据,则在受害者的培训数据上,编码器的输出表示的对数可能比测试数据更高,但如果对其进行了独立培训,则不会。我们使用密度估计模型来计算该对数可能性。作为我们评估的一部分,我们还建议测量被盗编码器的保真度并量化盗窃检测的有效性,而无需涉及下游任务;相反,我们利用相互信息和距离测量值。我们在视觉领域中广泛的经验结果表明,数据集推断是捍卫自我监督模型免受模型窃取的有前途的方向。
translated by 谷歌翻译
手术场景的语义分割是机器人辅助干预措施中任务自动化的先决条件。我们提出了LapseG3D,这是一种基于DNN的新方法,用于代表手术场景的点云的素云注释。由于训练数据的手动注释非常耗时,因此我们引入了一条半自治的基于聚类的管道,用于胆囊的注释,该管道用于为DNN生成分段标签。当对手动注释数据进行评估时,LapseG3D在前体猪肝的各种数据集上的胆囊分割达到了0.94的F1得分。我们显示LapseG3D可以准确地跨越具有不同RGB-D摄像机系统记录的不同胆囊和数据集。
translated by 谷歌翻译
创建高质量的动画和可重新可靠的3D人体化身的独特挑战是对人的眼睛进行建模。合成眼睛的挑战是多重的,因为它需要1)适当的表示眼和眼周区域的适当表示,以进行连贯的视点合成,能够表示弥漫性,折射和高度反射表面,2)2)脱离皮肤和眼睛外观这样的照明使其可以在新的照明条件下呈现,3)捕获眼球运动和周围皮肤的变形以使重新注视。传统上,这些挑战需要使用昂贵且繁琐的捕获设置来获得高质量的结果,即使那样,整体上的眼睛区域建模仍然难以捉摸。我们提出了一种新颖的几何形状和外观表示形式,该形式仅使用一组稀疏的灯光和摄像头,可以捕获高保真的捕获和感性动画,观察眼睛区域的综合和重新定位。我们的杂种表示将眼球的显式参数表面模型与眼周区域和眼内部的隐式变形体积表示结合在一起。这种新颖的混合模型旨在解决具有挑战性的面部面积的各个部分 - 明确的眼球表面允许在角膜处建模折射和高频镜面反射,而隐性表示非常适合通过模拟低频皮肤反射。球形谐波可以代表非表面结构,例如头发或弥漫性体积物体,这两者都是显式表面模型的挑战。我们表明,对于高分辨率的眼睛特写,我们的模型可以从看不见的照明条件下的新颖观点中综合高保真动画的目光。
translated by 谷歌翻译
对于痴呆症筛查和监测,标准化测试在临床常规中起着关键作用,因为它们旨在通过测量各种认知任务的性能来最大程度地降低主观性。在本文中,我们报告了一项由半标准化病史组成的研究,然后进行了两个标准化的神经心理学测试,即SKT和CERAD-NB。这些测试包括基本任务,例如命名对象,学习单词列表,以及广泛使用的工具,例如MMSE。大多数任务是在口头上执行的,因此应适用于基于成绩单的自动评分。对于第一批30例患者,我们根据手动和自动转录分析了专家手动评估与自动评估之间的相关性。对于SKT和CERAD-NB,我们都可以使用手动笔录观察到高至完美的相关性。对于某些相关性较低的任务,自动评分比人类参考更严格,因为它仅限于音频。使用自动转录,相关性降低,并且与识别精度有关;但是,我们仍然观察到高达0.98(SKT)和0.85(CERAD-NB)的高相关性。我们表明,使用单词替代方案有助于减轻识别错误,并随后改善与专家分数的相关性。
translated by 谷歌翻译
标准化测试在检测认知障碍中起着至关重要的作用。先前的工作表明,使用标准化图片描述任务中的音频数据可以自动检测认知障碍。提出的研究超出了这一点,评估了我们对来自两个标准化神经心理学测试的数据,即德国SKT和德国版本的CERAD-NB,以及患者与心理学家之间的半结构化临床访谈。对于测试,我们关注三个子测试的语音记录:阅读数字(SKT 3),干扰(SKT 7)和口头流利度(Cerad-NB 1)。我们表明,标准化测试的声学特征可用于可靠地区分非受损的人的认知受损个体。此外,我们提供的证据表明,即使是从访谈的随机语音样本中提取的特征也可能是认知障碍的歧视者。在我们的基线实验中,我们使用开米的功能和支持向量机分类器。在改进的设置中,我们表明使用WAV2VEC 2.0功能,我们可以达到高达85%的精度。
translated by 谷歌翻译
差异隐私(DP)是关于培训算法保证隐私保证的事实上的标准。尽管DP的经验观察降低了模型对现有成员推理(MI)攻击的脆弱性,但理论上的基础是文献中很大程度上缺少这种情况。在实践中,这意味着需要对模型进行DP培训,可以大大降低其准确性。在本文中,当培训算法提供$ \ epsilon $ -dp或$(\ epsilon,\ delta)$ -DP时,我们就对任何MI对手的积极准确性(即攻击精度)提供了更严格的限制。我们的界限为新型隐私放大方案的设计提供了信息,在该方案中,有效的训练集是在培训开始之前从较大集合的较大集合进行的,以大大降低MI准确性的界限。结果,我们的计划使DP用户在训练其模型时可以使用宽松的DP保证来限制任何MI对手的成功;这样可以确保模型的准确性受到隐私保证的影响较小。最后,我们讨论了我们的MI束缚在机器上学习领域的含义。
translated by 谷歌翻译