数字双胞胎已成为优化工程产品和系统性能的关键技术。高保真数值模拟构成了工程设计的骨干,从而准确地了解了复杂系统的性能。但是,大规模的,动态的非线性模型需要大量的计算资源,并且对于实时数字双胞胎应用而言是高度的。为此,采用了减少的订单模型(ROM),以近似高保真解决方案,同时准确捕获身体行为的主要方面。本工作提出了一个新的机器学习(ML)平台,用于开发ROM,以处理处理瞬态非线性偏微分方程的大规模数值问题。我们的框架被称为$ \ textit {fastsvd-ml-rom} $,利用$ \ textit {(i)} $单数值分解(SVD)更新方法,以计算多效性解决方案的线性子空间仿真过程,$ \ textIt {(ii)} $降低非线性维度的卷积自动编码器,$ \ textit {(iii)} $ feed-feed-feed-forderward神经网络以将输入参数映射到潜在的空间,以及$ \ textit {(iv) )} $长的短期内存网络,以预测和预测参数解决方案的动力学。 $ \ textit {fastsvd-ml-rom} $框架的效率用于2D线性对流扩散方程,圆柱周围的流体问题以及动脉段内的3D血流。重建结果的准确性证明了鲁棒性,并评估了所提出的方法的效率。
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
Automated slicing aims to identify subsets of evaluation data where a trained model performs anomalously. This is an important problem for machine learning pipelines in production since it plays a key role in model debugging and comparison, as well as the diagnosis of fairness issues. Scalability has become a critical requirement for any automated slicing system due to the large search space of possible slices and the growing scale of data. We present Autoslicer, a scalable system that searches for problematic slices through distributed metric computation and hypothesis testing. We develop an efficient strategy that reduces the search space through pruning and prioritization. In the experiments, we show that our search strategy finds most of the anomalous slices by inspecting a small portion of the search space.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译
Evaluating and comparing text-to-image models is a challenging problem. Significant advances in the field have recently been made, piquing interest of various industrial sectors. As a consequence, a gold standard in the field should cover a variety of tasks and application contexts. In this paper a novel evaluation approach is experimented, on the basis of: (i) a curated data set, made by high-quality royalty-free image-text pairs, divided into ten categories; (ii) a quantitative metric, the CLIP-score, (iii) a human evaluation task to distinguish, for a given text, the real and the generated images. The proposed method has been applied to the most recent models, i.e., DALLE2, Latent Diffusion, Stable Diffusion, GLIDE and Craiyon. Early experimental results show that the accuracy of the human judgement is fully coherent with the CLIP-score. The dataset has been made available to the public.
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
6D object pose estimation has been a research topic in the field of computer vision and robotics. Many modern world applications like robot grasping, manipulation, autonomous navigation etc, require the correct pose of objects present in a scene to perform their specific task. It becomes even harder when the objects are placed in a cluttered scene and the level of occlusion is high. Prior works have tried to overcome this problem but could not achieve accuracy that can be considered reliable in real-world applications. In this paper, we present an architecture that, unlike prior work, is context-aware. It utilizes the context information available to us about the objects. Our proposed architecture treats the objects separately according to their types i.e; symmetric and non-symmetric. A deeper estimator and refiner network pair is used for non-symmetric objects as compared to symmetric due to their intrinsic differences. Our experiments show an enhancement in the accuracy of about 3.2% over the LineMOD dataset, which is considered a benchmark for pose estimation in the occluded and cluttered scenes, against the prior state-of-the-art DenseFusion. Our results also show that the inference time we got is sufficient for real-time usage.
translated by 谷歌翻译
Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.
translated by 谷歌翻译
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm and then assessed in terms of fidelity and accuracy for predictions of wind speed, turbulence intensity, and power capture at the turbine and wind farm levels for different wind and atmospheric conditions. ML methods for data quality control and pre-processing are applied to the data set under investigation and found to outperform standard statistical methods. A hybrid model, comprised of a linear interpolation model, Gaussian process, deep neural network (DNN), and support vector machine, paired with a DNN filter, is found to achieve high accuracy for modeling wind turbine power capture. Modifications of the incoming freestream wind speed and turbulence intensity, $TI$, due to the evolution of the wind field over the wind farm and effects associated with operating turbines are also captured using DNN models. Thus, turbine-level modeling is achieved using models for predicting power capture while farm-level modeling is achieved by combining models predicting wind speed and $TI$ at each turbine location from freestream conditions with models predicting power capture. Combining these models provides results consistent with expected power capture performance and holds promise for future endeavors in wind farm modeling and diagnostics. Though training ML models is computationally expensive, using the trained models to simulate the entire wind farm takes only a few seconds on a typical modern laptop computer, and the total computational cost is still lower than other available mid-fidelity simulation approaches.
translated by 谷歌翻译