Accomplishing safe and efficient driving is one of the predominant challenges in the controller design of connected automated vehicles (CAVs). It is often more convenient to address these goals separately and integrate the resulting controllers. In this study, we propose a controller integration scheme to fuse performance-based controllers and safety-oriented controllers safely for the longitudinal motion of a CAV. The resulting structure is compatible with a large class of controllers, and offers flexibility to design each controller individually without affecting the performance of the others. We implement the proposed safe integration scheme on a connected automated truck using an optimal-in-energy controller and a safety-oriented connected cruise controller. We validate the premise of the safe integration through experiments with a full-scale truck in two scenarios: a controlled experiment on a test track and a real-world experiment on a public highway. In both scenarios, we achieve energy efficient driving without violating safety.
translated by 谷歌翻译
This paper considers mixed traffic consisting of connected automated vehicles equipped with vehicle-to-everything (V2X) connectivity and human-driven vehicles. A control strategy is proposed for communicating pairs of connected automated vehicles, where the two vehicles regulate their longitudinal motion by responding to each other, and, at the same time, stabilize the human-driven traffic between them. Stability analysis is conducted to find stabilizing controllers, and simulations are used to show the efficacy of the proposed approach. The impact of the penetration of connectivity and automation on the string stability of traffic is quantified. It is shown that, even with moderate penetration, connected automated vehicle pairs executing the proposed controllers achieve significant benefits compared to when these vehicles are disconnected and controlled independently.
translated by 谷歌翻译
提出了一种使用神经网络从顺序数据中学习时间延迟系统动力学的新型方法。具有训练延迟的神经网络用于近似延迟微分方程的右侧。我们通过离散时间历史记录并训练相应的神经普通微分方程(节点)来学习动力学,将延迟微分方程与普通微分方程联系起来。给出了使用Chaotic行为数据学习Mackey-Glass方程动力学的示例。在学习了非线性和时间延迟之后,我们证明了神经网络的分叉图与原始系统的分叉图相匹配。
translated by 谷歌翻译
这项工作为时间延迟系统的安全关键控制提供了一个理论框架。控制屏障功能的理论可为无延迟系统提供正式安全保证,扩展到具有状态延迟的系统。引入了控制屏障功能的概念,以实现正式的安全保证,该概念通过在无限尺寸状态空间中定义的安全集的向前不变性。所提出的框架能够在动态和安全状态下处理多个延迟和分布式延迟,并对可证明安全性的控制输入提供了仿射约束。该约束可以纳入优化问题,以合成最佳和可证明的安全控制器。该方法的适用性通过数值仿真示例证明。
translated by 谷歌翻译
平衡安全性和性能是现代控制系统设计中的主要挑战之一。此外,至关重要的是,在不诱导不必要的保守性降低绩效的情况下,确保安全至关重要。在这项工作中,我们提出了一种通过控制屏障功能(CBF)来进行安全关键控制合成的建设性方法。通过通过CBF过滤手工设计的控制器,我们能够达到性能行为,同时提供严格的安全保证。面对干扰,通过投入到国家安全的概念(ISSF)同时实现了稳健的安全性和性能。我们通过与倒置的示例同时开发CBF设计方法来采用教程方法,从而使设计过程混凝土中的挑战和敏感性。为了确定拟议方法的能力,我们考虑通过CBFS以无需拖车的8级卡车的形式来考虑通过CBF的CBF进行安全至关重要的设计。通过实验,我们看到了卡车驱动系统中未建模的干扰对CBF提供的安全保证的影响。我们表征了这些干扰并使用ISSF,生产出可靠的控制器,该控制器可以在不承认性能的情况下实现安全性。我们在模拟中评估了我们的设计,并且是在实验中首次在汽车系统上评估我们的设计。
translated by 谷歌翻译
We introduce organism networks, which function like a single neural network but are composed of several neural particle networks; while each particle network fulfils the role of a single weight application within the organism network, it is also trained to self-replicate its own weights. As organism networks feature vastly more parameters than simpler architectures, we perform our initial experiments on an arithmetic task as well as on simplified MNIST-dataset classification as a collective. We observe that individual particle networks tend to specialise in either of the tasks and that the ones fully specialised in the secondary task may be dropped from the network without hindering the computational accuracy of the primary task. This leads to the discovery of a novel pruning-strategy for sparse neural networks
translated by 谷歌翻译
Common to all different kinds of recurrent neural networks (RNNs) is the intention to model relations between data points through time. When there is no immediate relationship between subsequent data points (like when the data points are generated at random, e.g.), we show that RNNs are still able to remember a few data points back into the sequence by memorizing them by heart using standard backpropagation. However, we also show that for classical RNNs, LSTM and GRU networks the distance of data points between recurrent calls that can be reproduced this way is highly limited (compared to even a loose connection between data points) and subject to various constraints imposed by the type and size of the RNN in question. This implies the existence of a hard limit (way below the information-theoretic one) for the distance between related data points within which RNNs are still able to recognize said relation.
translated by 谷歌翻译
Periocular recognition has gained attention recently due to demands of increased robustness of face or iris in less controlled scenarios. We present a new system for eye detection based on complex symmetry filters, which has the advantage of not needing training. Also, separability of the filters allows faster detection via one-dimensional convolutions. This system is used as input to a periocular algorithm based on retinotopic sampling grids and Gabor spectrum decomposition. The evaluation framework is composed of six databases acquired both with near-infrared and visible sensors. The experimental setup is complemented with four iris matchers, used for fusion experiments. The eye detection system presented shows very high accuracy with near-infrared data, and a reasonable good accuracy with one visible database. Regarding the periocular system, it exhibits great robustness to small errors in locating the eye centre, as well as to scale changes of the input image. The density of the sampling grid can also be reduced without sacrificing accuracy. Lastly, despite the poorer performance of the iris matchers with visible data, fusion with the periocular system can provide an improvement of more than 20%. The six databases used have been manually annotated, with the annotation made publicly available.
translated by 谷歌翻译
Federated learning (FL) has emerged as an instance of distributed machine learning paradigm that avoids the transmission of data generated on the users' side. Although data are not transmitted, edge devices have to deal with limited communication bandwidths, data heterogeneity, and straggler effects due to the limited computational resources of users' devices. A prominent approach to overcome such difficulties is FedADMM, which is based on the classical two-operator consensus alternating direction method of multipliers (ADMM). The common assumption of FL algorithms, including FedADMM, is that they learn a global model using data only on the users' side and not on the edge server. However, in edge learning, the server is expected to be near the base station and have direct access to rich datasets. In this paper, we argue that leveraging the rich data on the edge server is much more beneficial than utilizing only user datasets. Specifically, we show that the mere application of FL with an additional virtual user node representing the data on the edge server is inefficient. We propose FedTOP-ADMM, which generalizes FedADMM and is based on a three-operator ADMM-type technique that exploits a smooth cost function on the edge server to learn a global model parallel to the edge devices. Our numerical experiments indicate that FedTOP-ADMM has substantial gain up to 33\% in communication efficiency to reach a desired test accuracy with respect to FedADMM, including a virtual user on the edge server.
translated by 谷歌翻译
在本文中,提出了一种颜色边缘检测方法,其中使用多尺度Gabor滤波器从输入颜色图像获得边缘。该方法的主要优点是在保持良好的噪声稳健性的同时,达到了高边缘检测精度。提出的方法包括三个方面:首先,RGB颜色图像由于其宽阔的着色区域和均匀的颜色分布而转换为CIE L*A*B*空间。其次,使用一组Gabor过滤器来平滑输入图像,并提取了色边缘强度图,并将其融合到具有噪声稳健性和准确边缘提取的新ESM中。第三,将熔融ESM嵌入精美探测器的途径中会产生噪声颜色边缘检测器。结果表明,所提出的检测器在检测准确性和噪声过程中具有更好的经验。
translated by 谷歌翻译