As multimodal learning finds applications in a wide variety of high-stakes societal tasks, investigating their robustness becomes important. Existing work has focused on understanding the robustness of vision-and-language models to imperceptible variations on benchmark tasks. In this work, we investigate the robustness of multimodal classifiers to cross-modal dilutions - a plausible variation. We develop a model that, given a multimodal (image + text) input, generates additional dilution text that (a) maintains relevance and topical coherence with the image and existing text, and (b) when added to the original text, leads to misclassification of the multimodal input. Via experiments on Crisis Humanitarianism and Sentiment Detection tasks, we find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model. Metric-based comparisons with several baselines and human evaluations indicate that our dilutions show higher relevance and topical coherence, while simultaneously being more effective at demonstrating the brittleness of the multimodal classifiers. Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations, especially in human-facing societal applications. The code and other resources are available at https://claws-lab.github.io/multimodal-robustness/.
translated by 谷歌翻译
虹膜呈现攻击检测(iPad)对于确保个人身份至关重要是广泛使用的虹膜识别系统。然而,由于在不受约束的环境中捕获和攻击样本之间的高视觉相关性,现有的iPad算法不会概括到看不见和跨域场景。虹膜眼镜图像复杂纹理和形态模式的这些相似之处进一步促进了性能降解。为了减轻这些缺点,本文提出了DFCanet:密集特征校准和注意力引导网络,其校准了与全球位于全球位于局部涂抹的虹膜模式。从特征校准卷积和剩余学习中振衡优势,DFCanet会生成特定于域的IRIS特征表示。由于校准特征映射中的一些通道包含更突出的信息,因此我们通过通道注意机制利用频道跨越渠道的鉴别特征学习。为了加强挑战我们所提出的模型,我们使DFCanet通过非统一和非归一化的眼虹膜图像运行。在挑战性跨域和域内场景中进行的广泛实验突出了一致的表现优势。与最先进的方法相比,DFCanet分别实现了基准IIITD CLI,IIIT CSD和NDCLD13数据库的性能显着提升。此外,已经引入了一种新的基于增量学习的方法,以克服解散的虹膜数据特征和数据稀缺。本文还追求了在各种跨域协议下进行评估的攻击类别下进行软镜头的具有挑战性的情景。该代码将公开可用。
translated by 谷歌翻译
Mixup is a popular data augmentation technique for training deep neural networks where additional samples are generated by linearly interpolating pairs of inputs and their labels. This technique is known to improve the generalization performance in many learning paradigms and applications. In this work, we first analyze Mixup and show that it implicitly regularizes infinitely many directional derivatives of all orders. We then propose a new method to improve Mixup based on the novel insight. To demonstrate the effectiveness of the proposed method, we conduct experiments across various domains such as images, tabular data, speech, and graphs. Our results show that the proposed method improves Mixup across various datasets using a variety of architectures, for instance, exhibiting an improvement over Mixup by 0.8% in ImageNet top-1 accuracy.
translated by 谷歌翻译
In multi-agent systems with large number of agents, typically the contribution of each agent to the value of other agents is minimal (e.g., aggregation systems such as Uber, Deliveroo). In this paper, we consider such multi-agent systems where each agent is self-interested and takes a sequence of decisions and represent them as a Stochastic Non-atomic Congestion Game (SNCG). We derive key properties for equilibrium solutions in SNCG model with non-atomic and also nearly non-atomic agents. With those key equilibrium properties, we provide a novel Multi-Agent Reinforcement Learning (MARL) mechanism that minimizes variance across values of agents in the same state. To demonstrate the utility of this new mechanism, we provide detailed results on a real-world taxi dataset and also a generic simulator for aggregation systems. We show that our approach reduces the variance in revenues earned by taxi drivers, while still providing higher joint revenues than leading approaches.
translated by 谷歌翻译
This thesis considers sequential decision problems, where the loss/reward incurred by selecting an action may not be inferred from observed feedback. A major part of this thesis focuses on the unsupervised sequential selection problem, where one can not infer the loss incurred for selecting an action from observed feedback. We also introduce a new setup named Censored Semi Bandits, where the loss incurred for selecting an action can be observed under certain conditions. Finally, we study the channel selection problem in the communication networks, where the reward for an action is only observed when no other player selects that action to play in the round. These problems find applications in many fields like healthcare, crowd-sourcing, security, adaptive resource allocation, among many others. This thesis aims to address the above-described sequential decision problems by exploiting specific structures these problems exhibit. We develop provably optimal algorithms for each of these setups with weak feedback and validate their empirical performance on different problem instances derived from synthetic and real datasets.
translated by 谷歌翻译
This thesis considers sequential decision problems, where the loss/reward incurred by selecting an action may not be inferred from observed feedback. A major part of this thesis focuses on the unsupervised sequential selection problem, where one can not infer the loss incurred for selecting an action from observed feedback. We also introduce a new setup named Censored Semi Bandits, where the loss incurred for selecting an action can be observed under certain conditions. Finally, we study the channel selection problem in the communication networks, where the reward for an action is only observed when no other player selects that action to play in the round. These problems find applications in many fields like healthcare, crowd-sourcing, security, adaptive resource allocation, among many others. This thesis aims to address the above-described sequential decision problems by exploiting specific structures these problems exhibit. We develop provably optimal algorithms for each of these setups with weak feedback and validate their empirical performance on different problem instances derived from synthetic and real datasets.
translated by 谷歌翻译
This paper presents a comprehensive survey of low-light image and video enhancement. We begin with the challenging mixed over-/under-exposed images, which are under-performed by existing methods. To this end, we propose two variants of the SICE dataset named SICE_Grad and SICE_Mix. Next, we introduce Night Wenzhou, a large-scale, high-resolution video dataset, to address the issue of the lack of a low-light video dataset that discount the use of low-light image enhancement (LLIE) to videos. The Night Wenzhou dataset is challenging since it consists of fast-moving aerial scenes and streetscapes with varying illuminations and degradation. We conduct extensive key technique analysis and experimental comparisons for representative LLIE approaches using these newly proposed datasets and the current benchmark datasets. Finally, we address unresolved issues and propose future research topics for the LLIE community.
translated by 谷歌翻译
We investigate data-driven texture modeling via analysis and synthesis with generative adversarial networks. For network training and testing, we have compiled a diverse set of spatially homogeneous textures, ranging from stochastic to regular. We adopt StyleGAN3 for synthesis and demonstrate that it produces diverse textures beyond those represented in the training data. For texture analysis, we propose GAN inversion using a novel latent domain reconstruction consistency criterion for synthesized textures, and iterative refinement with Gramian loss for real textures. We propose perceptual procedures for evaluating network capabilities, exploring the global and local behavior of latent space trajectories, and comparing with existing texture analysis-synthesis techniques.
translated by 谷歌翻译
Recent advances in deep learning research, such as transformers, have bolstered the ability for automated agents to generate creative texts similar to those that a human would write. By default, transformer decoders can only generate new text with respect to previously generated text. The output distribution of candidate tokens at any position is conditioned on previously selected tokens using a self-attention mechanism to emulate the property of autoregression. This is inherently limiting for tasks such as controllable story generation where it may be necessary to condition on future plot events when writing a story. In this work, we propose Future Sight, a method for finetuning a pretrained generative transformer on the task of future conditioning. Transformer decoders are typically pretrained on the task of completing a context, one token at a time, by means of self-attention. Future Sight additionally enables a decoder to attend to an encoded future plot event. This motivates the decoder to expand on the context in a way that logically concludes with the provided future. During inference, the future plot event can be written by a human author to steer the narrative being generated in a certain direction. We evaluate the efficacy of our approach on a story generation task with human evaluators.
translated by 谷歌翻译
Transformer-based models have gained large popularity and demonstrated promising results in long-term time-series forecasting in recent years. In addition to learning attention in time domain, recent works also explore learning attention in frequency domains (e.g., Fourier domain, wavelet domain), given that seasonal patterns can be better captured in these domains. In this work, we seek to understand the relationships between attention models in different time and frequency domains. Theoretically, we show that attention models in different domains are equivalent under linear conditions (i.e., linear kernel to attention scores). Empirically, we analyze how attention models of different domains show different behaviors through various synthetic experiments with seasonality, trend and noise, with emphasis on the role of softmax operation therein. Both these theoretical and empirical analyses motivate us to propose a new method: TDformer (Trend Decomposition Transformer), that first applies seasonal-trend decomposition, and then additively combines an MLP which predicts the trend component with Fourier attention which predicts the seasonal component to obtain the final prediction. Extensive experiments on benchmark time-series forecasting datasets demonstrate that TDformer achieves state-of-the-art performance against existing attention-based models.
translated by 谷歌翻译