在运输系统中引入信息和通信技术(ICT)导致了几个优势(运输,移动性,交通管理)。然而,它可能在增加安全挑战方面带来一些缺点,也与人类行为有关。作为一个例子,在过去的几十年中,尝试表征驱动程序的行为大多是针对性的。本文提出了一种安全的例程,一种范式,它使用驾驶员习惯来探讨驱动程序识别,特别是将车辆的所有者与其他驱动程序区分开来。我们根据机器学习技术与其他三项现有研究工作相结合评估安全的例程。结果是使用众所周知的指标来测量的,并显示安全的常规优于比较的作品。
translated by 谷歌翻译
当前的骨架动作表示方法学习的方法通常集中在受约束的场景上,其中在实验室环境中记录了视频和骨骼数据。在处理现实世界视频中估计的骨骼数据时,由于受试者和摄像机观点之间的差异很大,因此此类方法的性能差。为了解决这个问题,我们通过一种新颖的视图自动编码器介绍了自我监视的骨架动作表示学习。通过Leverage在不同的人类表演者之间进行运动重新定位作为借口任务,以便在2D或3D骨架序列的视觉表示之上删除潜在的动作特异性“运动”特征。这种“运动”功能对于骨架几何和相机视图是不变的,并允许通过辅助,跨视图和跨视图动作分类任务。我们进行了一项研究,重点是针对基于骨架的动作识别的转移学习,并在现实世界数据(例如Posetics)上进行自我监督的预训练。我们的结果表明,从VIA中学到的骨架表示足以提高最新动作分类精度,不仅在3D实验室数据集(例如NTU-RGB+D 60和NTU-RGB+D 120)上,而且还在在仅准确估计2D数据的现实数据集中,例如Toyota Smarthome,UAV-Human和Penn Action。
translated by 谷歌翻译
支持向量机(SVM)是众所周知的监督学习算法类别之一。此外,圆锥分段SVM(CS-SVM)是标准二进制SVM的天然多类模拟,因为CS-SVM模型正在处理已知数据点的确切值的情况。本文研究数据点不确定或标记时,研究CS-SVM。对于某些分布已知的属性,使用机会约束的CS-SVM方法来确保对不确定数据的错误分类概率很小。给出了几何解释,以显示CS-SVM的工作原理。最后,我们提出了实验结果,以调查CS-SVM的性能的机会限制。
translated by 谷歌翻译
设计可以成功部署在日常生活环境中的活动检测系统需要构成现实情况典型挑战的数据集。在本文中,我们介绍了一个新的未修剪日常生存数据集,该数据集具有几个现实世界中的挑战:Toyota Smarthome Untrimmed(TSU)。 TSU包含以自发方式进行的各种活动。数据集包含密集的注释,包括基本的,复合活动和涉及与对象相互作用的活动。我们提供了对数据集所需的现实世界挑战的分析,突出了检测算法的开放问题。我们表明,当前的最新方法无法在TSU数据集上实现令人满意的性能。因此,我们提出了一种新的基线方法,以应对数据集提供的新挑战。此方法利用一种模态(即视线流)生成注意力权重,以指导另一种模态(即RGB)以更好地检测活动边界。这对于检测以高时间差异为特征的活动特别有益。我们表明,我们建议在TSU和另一个受欢迎的挑战数据集Charades上优于最先进方法的方法。
translated by 谷歌翻译