A storyboard is a roadmap for video creation which consists of shot-by-shot images to visualize key plots in a text synopsis. Creating video storyboards however remains challenging which not only requires association between high-level texts and images, but also demands for long-term reasoning to make transitions smooth across shots. In this paper, we propose a new task called Text synopsis to Video Storyboard (TeViS) which aims to retrieve an ordered sequence of images to visualize the text synopsis. We construct a MovieNet-TeViS benchmark based on the public MovieNet dataset. It contains 10K text synopses each paired with keyframes that are manually selected from corresponding movies by considering both relevance and cinematic coherence. We also present an encoder-decoder baseline for the task. The model uses a pretrained vision-and-language model to improve high-level text-image matching. To improve coherence in long-term shots, we further propose to pre-train the decoder on large-scale movie frames without text. Experimental results demonstrate that our proposed model significantly outperforms other models to create text-relevant and coherent storyboards. Nevertheless, there is still a large gap compared to human performance suggesting room for promising future work.
translated by 谷歌翻译
In subcellular biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, fluorescence staining is slow, expensive, and harmful to cells. In this paper, we treat it as a deep learning task termed subcellular structure prediction (SSP), aiming to predict the 3D fluorescent images of multiple subcellular structures from a 3D transmitted-light image. Unfortunately, due to the limitations of current biotechnology, each image is partially labeled in SSP. Besides, naturally, the subcellular structures vary considerably in size, which causes the multi-scale issue in SSP. However, traditional solutions can not address SSP well since they organize network parameters inefficiently and inflexibly. To overcome these challenges, we propose Re-parameterizing Mixture-of-Diverse-Experts (RepMode), a network that dynamically organizes its parameters with task-aware priors to handle specified single-label prediction tasks of SSP. In RepMode, the Mixture-of-Diverse-Experts (MoDE) block is designed to learn the generalized parameters for all tasks, and gating re-parameterization (GatRep) is performed to generate the specialized parameters for each task, by which RepMode can maintain a compact practical topology exactly like a plain network, and meanwhile achieves a powerful theoretical topology. Comprehensive experiments show that RepMode outperforms existing methods on ten of twelve prediction tasks of SSP and achieves state-of-the-art overall performance.
translated by 谷歌翻译
Traditional supervised learning mostly works on individual tasks and requires training on a large set of task-specific examples. This paradigm seriously hinders the development of task generalization since preparing a task-specific example set is costly. To build a system that can quickly and easily generalize to new tasks, task instructions have been adopted as an emerging trend of supervision recently. These instructions give the model the definition of the task and allow the model to output the appropriate answer based on the instructions and inputs. However, task instructions are often expressed in different forms, which can be interpreted from two threads: first, some instructions are short sentences and are pretrained language model (PLM) oriented, such as prompts, while other instructions are paragraphs and are human-oriented, such as those in Amazon MTurk; second, different end-users very likely explain the same task with instructions of different textual expressions. A robust system for task generalization should be able to handle any new tasks regardless of the variability of instructions. However, the system robustness in dealing with instruction-driven task generalization is still unexplored. This work investigates the system robustness when the instructions of new tasks are (i) maliciously manipulated, (ii) paraphrased, or (iii) from different levels of conciseness. To our knowledge, this is the first work that systematically studies how robust a PLM is when it is supervised by instructions with different factors of variability.
translated by 谷歌翻译
Recently, diffusion frameworks have achieved comparable performance with previous state-of-the-art image generation models. Researchers are curious about its variants in discriminative tasks because of its powerful noise-to-image denoising pipeline. This paper proposes DiffusionInst, a novel framework that represents instances as instance-aware filters and formulates instance segmentation as a noise-to-filter denoising process. The model is trained to reverse the noisy groundtruth without any inductive bias from RPN. During inference, it takes a randomly generated filter as input and outputs mask in one-step or multi-step denoising. Extensive experimental results on COCO and LVIS show that DiffusionInst achieves competitive performance compared to existing instance segmentation models. We hope our work could serve as a simple yet effective baseline, which could inspire designing more efficient diffusion frameworks for challenging discriminative tasks. Our code is available in https://github.com/chenhaoxing/DiffusionInst.
translated by 谷歌翻译
High-definition (HD) semantic map generation of the environment is an essential component of autonomous driving. Existing methods have achieved good performance in this task by fusing different sensor modalities, such as LiDAR and camera. However, current works are based on raw data or network feature-level fusion and only consider short-range HD map generation, limiting their deployment to realistic autonomous driving applications. In this paper, we focus on the task of building the HD maps in both short ranges, i.e., within 30 m, and also predicting long-range HD maps up to 90 m, which is required by downstream path planning and control tasks to improve the smoothness and safety of autonomous driving. To this end, we propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels. We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods with large margins. Furthermore, we propose a new metric to evaluate the long-range HD map prediction and apply the generated HD map to a downstream path planning task. The results show that by using the long-range HD maps predicted by our method, we can make better path planning for autonomous vehicles. The code will be available at https://github.com/haomo-ai/SuperFusion.
translated by 谷歌翻译
Intelligent mesh generation (IMG) refers to a technique to generate mesh by machine learning, which is a relatively new and promising research field. Within its short life span, IMG has greatly expanded the generalizability and practicality of mesh generation techniques and brought many breakthroughs and potential possibilities for mesh generation. However, there is a lack of surveys focusing on IMG methods covering recent works. In this paper, we are committed to a systematic and comprehensive survey describing the contemporary IMG landscape. Focusing on 110 preliminary IMG methods, we conducted an in-depth analysis and evaluation from multiple perspectives, including the core technique and application scope of the algorithm, agent learning goals, data types, targeting challenges, advantages and limitations. With the aim of literature collection and classification based on content extraction, we propose three different taxonomies from three views of key technique, output mesh unit element, and applicable input data types. Finally, we highlight some promising future research directions and challenges in IMG. To maximize the convenience of readers, a project page of IMG is provided at \url{https://github.com/xzb030/IMG_Survey}.
translated by 谷歌翻译
住房质量是区域财富,安全和健康的重要代理。了解住房质量的分布对于揭示农村发展状况并提供政治建议至关重要。但是,目前的农村房屋质量数据在很大程度上取决于在国家或省级的自上而下,耗时的调查,但未能在村庄一级解开住房质量。为了填补准确描述农村住房质量条件和数据不足之间的空白,我们收集大量的农村图像,并邀请用户按大规模评估其住房质量。此外,提出了一个深度学习框架,以根据众包农村图像自动有效地预测住房质量。
translated by 谷歌翻译
视觉关系检测旨在检测图像中对象之间的相互作用。但是,由于对象和相互作用的多样性,此任务遭受了组合爆炸的影响。由于与同一对象相关的相互作用是依赖的,因此我们探讨了相互作用的依赖性以减少搜索空间。我们通过交互图明确地对象和交互对象进行建模,然后提出一种消息式风格的算法来传播上下文信息。因此,我们称为建议的方法神经信息传递(NMP)。我们进一步整合了语言先验和空间线索,以排除不切实际的互动并捕获空间互动。两个基准数据集的实验结果证明了我们提出的方法的优越性。我们的代码可在https://github.com/phyllish/nmp上找到。
translated by 谷歌翻译
最近,图神经网络显示了建模基于网络的推荐系统中复杂拓扑结构的优势。由于节点之间的各种相互作用以及来自各种类型的节点和边缘的大量语义,因此在多重异质网络中学习表达性节点表示的研究兴趣爆发。推荐系统中最重要的任务之一是预测特定边缘类型下两个节点之间的潜在连接(即关系)。尽管现有的研究利用明确的元数据来汇总邻居,但实际上,它们仅考虑了关系内部的元数据,因此无法通过相互关联信息来利用潜在的提升。此外,在各种关系下,尤其是在越来越多的节点和边缘类型的情况下,全面利用相互关系的元数据并不总是直接的。此外,两个节点之间不同关系的贡献很难衡量。为了应对挑战,我们提出了Hybridgnn,这是一种具有混合聚集流和分层的端到端GNN模型,以在多路复用方案中充分利用异质性。具体而言,Hybridgnn应用了一个随机的关系探索模块来利用不同关系之间的多重性属性。然后,我们的模型利用在关系内的元数据和随机探索下的混合聚集流以学习丰富的语义。为了探索不同聚合流的重要性并利用多重性属性,我们提出了一个新型的分层注意模块,该模块既利用了Metapath级别的注意力和关系级的关注。广泛的实验结果表明,与几个最先进的基线相比,Hybridgnn取得了最佳性能。
translated by 谷歌翻译
我们表明,诸如Stylegan和Biggan之类的预训练的生成对抗网络(GAN)可以用作潜在银行,以提高图像超分辨率的性能。尽管大多数现有面向感知的方法试图通过以对抗性损失学习来产生现实的产出,但我们的方法,即生成的潜在银行(GLEAN),通过直接利用预先训练的gan封装的丰富而多样的先验来超越现有实践。但是,与需要在运行时需要昂贵的图像特定优化的普遍的GAN反演方法不同,我们的方法只需要单个前向通行证才能修复。可以轻松地将Glean合并到具有多分辨率Skip连接的简单编码器银行decoder架构中。采用来自不同生成模型的先验,可以将收集到各种类别(例如人的面孔,猫,建筑物和汽车)。我们进一步提出了一个轻巧的Glean,名为Lightglean,该版本仅保留Glean中的关键组成部分。值得注意的是,Lightglean仅由21%的参数和35%的拖鞋组成,同时达到可比的图像质量。我们将方法扩展到不同的任务,包括图像着色和盲图恢复,广泛的实验表明,与现有方法相比,我们提出的模型表现出色。代码和模型可在https://github.com/open-mmlab/mmediting上找到。
translated by 谷歌翻译