自动化驾驶系统应该有能力监督自己的性能并要求人类驱动程序在必要时接管。在车道保持场景中,车辆未来轨迹的预测是实现安全可靠的驾驶自动化的关键。以前关于车辆轨迹预测的研究主要分为两类,即基于物理和基于机动的方法。本文采用了基于物理的方法,提出了一种基于闭环车辆动力学模型的车道出发预测算法。我们使用扩展卡尔曼滤波器根据感测模块输出来估计当前车辆状态。然后,具有实际车道保持控制法的卡尔曼预测器用于预测未来的转向动作和车辆状态。车道出发评估模块评估车辆角位置的概率分布,并决定是否启动人类收购请求。预测算法能够描述未来车辆姿势的随机特征,其在模拟测试中被预先证明。最后,在15至50 km / h的速度下的道路测试进一步表明,专业方法可以准确地预测车辆未来的轨迹。它可以作为对自动化车道保持功能的通道偏离风险评估的有希望的解决方案。
translated by 谷歌翻译
无罪化的交叉路口驾驶对自动车辆有挑战性。为了安全有效的性能,应考虑相互作用的车辆的多样化和动态行为。基于游戏理论框架,提出了一种用于无罪交叉口的自动决策的人类收益设计方法。展望理论被引入将客观碰撞风险映射到主观驾驶员收益,并且驾驶风格可以量化为安全和速度之间的权衡。为了考虑相互作用的动态,进一步引入了概率模型来描述司机的加速趋势。仿真结果表明,该决策算法可以描述极限情况下双车交互的动态过程。统一采样案例模拟的统计数据表明,安全互动的成功率达到98%,而且还可以保证速度效率。在四臂交叉路口的四车辆交互情景中进一步应用并验证了所提出的方法。
translated by 谷歌翻译
这项研究调查了基于知识的问题产生的任务(KBQG)。传统的KBQG的作品从知识图中的FACT三元组中产生了问题,该问题无法表达复杂的操作,例如SPARQL中的聚合和比较。此外,由于大规模SPARQL问题对的昂贵注释,因此需要急切地探索SPARQL的KBQG,因此需要急切地探索SPARQL。最近,由于通常接受自然语言(NL)至NL范式培训的生成预训练的语言模型(PLM)已被证明对低资源生成有效,例如T5和Bart,如何有效地利用它们来生成NL - 非NL SPARQL的问题是具有挑战性的。为了应对这些挑战,提出了AutoQGS是SPARQL低资源KBQG的自动推出方法。首先,我们提出要直接从SPARQL生成问题,以处理KBQG任务以处理复杂的操作。其次,我们提出了一个对大规模无监督数据训练的自动档案,以将SPARQL重新描述为NL描述,从而平滑了从非NL SPARQL到NL问题的低资源转换。 WebQuestionsSP,ComlexWebQuestions 1.1和路径问题的实验结果表明,我们的模型可实现最新的性能,尤其是在低资源设置中。此外,为进一步的KBQG研究生成了330k Factoid复杂问题-SPARQL对的语料库。
translated by 谷歌翻译
在本文中,我们提出了多跳问题回答的两个阶段模型。第一阶段是一个层次图网络,该网络用于对多跳问题进行推理,并能够使用文档的自然结构(即段落,问题,句子和实体)捕获不同级别的粒度。推理过程是转换为节点分类任务(即,段落节点和句子节点)。第二阶段是语言模型微调任务。在一句话中,第一阶段使用图形神经网络选择和连接支持句子作为一个段落,第二阶段在语言模型微调范式中找到答案跨度。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译