Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
Vision Transformer已成为计算机视觉中的新范式,表现出出色的性能,同时还具有昂贵的计算成本。图像令牌修剪是VIT压缩的主要方法之一,这是因为相对于令牌数的复杂性是二次的,而许多仅包含背景区域的令牌并不能真正促进最终预测。现有作品要么依赖其他模块来评分单个令牌的重要性,要么为不同的输入实例实施固定比率修剪策略。在这项工作中,我们提出了一个自适应的稀疏令牌修剪框架,成本最低。我们的方法是基于可学习的阈值,并利用多头自我注意力来评估令牌信息,但几乎没有其他操作。具体而言,我们首先提出了廉价的注意力重点加权阶级注意力评分机制。然后,将可学习的参数插入VIT作为阈值,以区分信息令牌和不重要的令牌。通过比较令牌注意分数和阈值,我们可以从层次上丢弃无用的令牌,从而加速推理。可学习的阈值在预算感知培训中进行了优化,以平衡准确性和复杂性,并为不同的输入实例执行相应的修剪配置。广泛的实验证明了我们方法的有效性。例如,我们的方法将DEIT-S的吞吐量提高了50%,并且TOP-1的准确性仅下降了0.2%,这比以前的方法在准确性和延迟之间取得了更好的权衡。
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,允许分散的客户在不共享其私人数据的情况下进行协作学习。但是,过度的计算和沟通要求对当前的FL框架构成挑战,尤其是在训练大型模型时。为了防止这些问题阻碍FL系统的部署,我们提出了一个轻巧的框架,客户共同学习融合由多个固定预训练的模型生成的表示形式,而不是从SCRATCH培训大型模型。这通过考虑如何从预先训练的模型中捕获更多特定于客户的信息,并共同提高每个客户利用这些现成模型的能力,从而导致我们解决了一个更实用的FL问题。在这项工作中,我们设计了一种联合原型对比度学习(FEDPCL)方法,该方法通过其类原型共享客户的知识,并以原型对比度方式构建特定于客户的表示。共享原型而不是可学习的模型参数可以使每个客户以个性化的方式融合表示表示,同时以紧凑的形式保持共享知识以进行有效的通信。我们在轻量级框架中对拟议的FEDPCL进行了彻底的评估,以测量和可视化其在流行的FL数据集上融合各种预训练模型的能力。
translated by 谷歌翻译
人类可以不断学习新知识。但是,在学习新任务后,机器学习模型在以前的任务上的性能急剧下降。认知科学指出,类似知识的竞争是遗忘的重要原因。在本文中,我们根据大脑的元学习和关联机制设计了一个用于终身学习的范式。它从两个方面解决了问题:提取知识和记忆知识。首先,我们通过背景攻击破坏样本的背景分布,从而增强了模型以提取每个任务的关键特征。其次,根据增量知识和基础知识之间的相似性,我们设计了增量知识的自适应融合,这有助于模型将能力分配到不同困难的知识。理论上分析了所提出的学习范式可以使不同任务的模型收敛到相同的最优值。提出的方法已在MNIST,CIFAR100,CUB200和ImagEnet100数据集上进行了验证。
translated by 谷歌翻译
Stylegan家族是无条件产生的最受欢迎的生成对抗网络(GAN)之一。尽管其性能令人印象深刻,但其对存储和计算的需求很高,仍阻碍了他们在资源约束设备上的部署。本文提供了对流行风格的建筑的蒸馏的全面研究。我们的关键见解是,StyleGAN蒸馏的主要挑战在于输出差异问题,在该问题中,教师和学生模型在给定相同的输入潜在代码的情况下产生不同的输出。标准知识蒸馏损失通常在这种异质蒸馏场景下失败。我们对此差异问题的原因和影响进行彻底分析,并确定映射网络在确定生成图像的语义信息中起着至关重要的作用。基于这一发现,我们为学生模型提出了一种新颖的初始化策略,该策略可以确保最大程度的输出一致性。为了进一步增强教师和学生模型之间的语义一致性,我们提出了基于潜在的蒸馏损失,可保留潜在空间中的语义关系。广泛的实验证明了我们的方法在蒸馏式stylegan2和stylegan3中的有效性,超过了现有的gan蒸馏方法。
translated by 谷歌翻译
模型不合时宜的元学习(MAML)是一种著名的少数学习方法,它启发了许多后续工作,例如Anil和Boil。但是,作为一种归纳方法,MAML无法完全利用查询集的信息,从而限制了其获得更高通用性的潜力。为了解决这个问题,我们提出了一种简单而有效的方法,该方法可以适应性地生成伪标记,并可以提高MAML家族的性能。所提出的方法,被称为生成伪标签的MAML(GP-MAML),GP-Anil和GP-Boil,是查询的杠杆统计数据,以提高新任务的性能。具体而言,我们自适应地添加伪标签并从查询集中挑选样品,然后使用挑选的查询样品和支持集对模型进行重新训练。 GP系列还可以使用伪查询集中的信息在元测试过程中重新培训网络。尽管某些转导方法(例如跨传播网络(TPN))努力实现这一目标。
translated by 谷歌翻译
指导可学习的参数优化的一种吸引人的方法,例如特征图,是全球关注,它以成本的一小部分启发了网络智能。但是,它的损失计算过程仍然很短:1)我们只能产生一维的“伪标签”,因为该过程中涉及的人工阈值不健壮; 2)等待损失计算的注意力必然是高维的,而通过卷积减少它将不可避免地引入其他可学习的参数,从而使损失的来源混淆。为此,我们设计了一个基于软磁性注意的简单但有效的间接注意力优化(IIAO)模块,该模块将高维注意图转换为数学意义上的一维功能图,以通过网络中途进行损失计算,同时自动提供自适应多尺度融合以配备金字塔模块。特殊转化产生相对粗糙的特征,最初,区域的预测性谬误性随着人群的密度分布而变化,因此我们定制区域相关损失(RCLOSS)以检索连续错误的错误区域和平滑的空间信息。广泛的实验证明,我们的方法在许多基准数据集中超过了先前的SOTA方法。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
注释的医学图像昂贵,有时甚至无法在一定程度上获得地标检测精度。半监督学习通过利用未标记的数据来了解解剖标志性的人口结构来减轻对大规模注释数据的依赖。全局形状约束是解剖标识的固有属性,为更加一致的伪标签提供了有价值的指导,这些指南在先前的半监督方法中被忽略。在本文中,我们通过完全考虑全局形状约束,提出了一种用于半监控地标检测的模型 - 不可知的形状调节的自我训练框架。具体而言,为了确保伪标签是可靠且保持一致的,基于PCA的形状模型调整伪标签并消除异常。一种新的区域注意力损失,使网络自动关注伪标签周围的结构一致区域。广泛的实验表明,我们的方法优于其他半监督方法,并在三个医学图像数据集中实现了显着的改进。此外,我们的框架是灵活的,可用作集成到最具监控方法的即插即用模块,以进一步提高性能。
translated by 谷歌翻译
缺乏可解释性阻碍了AI技术的大规模采用。然而,可解释性的基本思想以及如何将其付诸实践,仍然不明确。我们在本研究中基于近似理论提供可解释性的概念。我们首先在特定模型(完全连接的神经网络)上实现这种近似解释,然后建议使用MLP作为通用解释器来解释任意黑匣子型号。广泛的实验表明了我们方法的有效性。
translated by 谷歌翻译