The deep neural network (DNN) models for object detection using camera images are widely adopted in autonomous vehicles. However, DNN models are shown to be susceptible to adversarial image perturbations. In the existing methods of generating the adversarial image perturbations, optimizations take each incoming image frame as the decision variable to generate an image perturbation. Therefore, given a new image, the typically computationally-expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while considering the underlying physical dynamics of autonomous vehicles, their mission, and the environment. We propose a multi-level stochastic optimization framework that monitors an attacker's capability of generating the adversarial perturbations. Based on this capability level, a binary decision attack/not attack is introduced to enhance the effectiveness of the attacker. We evaluate our proposed multi-level image attack framework using simulations for vision-guided autonomous vehicles and actual tests with a small indoor drone in an office environment. The results show our method's capability to generate the image attack in real-time while monitoring when the attacker is proficient given state estimates.
translated by 谷歌翻译
本文介绍了可能的紧急着陆点,在线导航以及在发动机熄灭下自动降落的路径的有效可行性评估。拟议的多层次自适应安全控制框架使无人驾驶飞机(UAV)在大型不确定性下能够执行具有足够经验的人类飞行员的安全操作。在此框架中,首先将简化的飞行模型用于一组着陆点和轨迹生成的时间效率可行性评估。然后,使用在线路径后路径来跟踪所选的着陆轨迹。我们使用高保真模拟环境为固定翼飞机测试和验证各种天气不确定性的拟议方法。对于在恶劣天气条件下由于发动机故障而导致的紧急降落的情况,模拟结果表明,所提出的自动着陆框架对于不确定性和在不同的着陆阶段进行适应性稳定,同时在计算上是廉价的计划和跟踪任务。
translated by 谷歌翻译
大多数空中操纵器都使用串行刚性链接设计,在操纵过程中启动接触时会导致大力,并可能导致飞行稳定性难度。连续操作器的遵守情况可能会改善这种限制。为了实现这一目标,我们介绍了空中无人机的紧凑,轻巧和模块化电缆驱动的连续操作的新颖设计。然后,我们为其运动学,静电和刚度(合规性)得出一个完整的建模框架。该框架对于将操纵器集成到空中无人机至关重要。最后,我们报告了硬件原型的初步实验验证,从而提供了有关其操纵可行性的见解。未来的工作包括对拟议的连续操作机与空中无人机的集成和测试。
translated by 谷歌翻译
GTFLAT, as a game theory-based add-on, addresses an important research question: How can a federated learning algorithm achieve better performance and training efficiency by setting more effective adaptive weights for averaging in the model aggregation phase? The main objectives for the ideal method of answering the question are: (1) empowering federated learning algorithms to reach better performance in fewer communication rounds, notably in the face of heterogeneous scenarios, and last but not least, (2) being easy to use alongside the state-of-the-art federated learning algorithms as a new module. To this end, GTFLAT models the averaging task as a strategic game among active users. Then it proposes a systematic solution based on the population game and evolutionary dynamics to find the equilibrium. In contrast with existing approaches that impose the weights on the participants, GTFLAT concludes a self-enforcement agreement among clients in a way that none of them is motivated to deviate from it individually. The results reveal that, on average, using GTFLAT increases the top-1 test accuracy by 1.38%, while it needs 21.06% fewer communication rounds to reach the accuracy.
translated by 谷歌翻译
无线网络的第五生成(5G)将更加自适应和异质。可重新配置的智能表面技术使5G能够在多仪波形上工作。但是,在这样的动态网络中,特定调制类型的识别至关重要。我们提出了基于人工智能的RIS辅助数字分类方法。我们培训卷积神经网络以对数字调制进行分类。所提出的方法可以直接在接收的信号上学习并学习特征,而无需提取功能。介绍和分析了卷积神经网络学到的功能。此外,还研究了在特定SNR范围内接收信号的强大功能。发现所提出的分类方法的准确性很显着,尤其是对于低水平的SNR。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
智能EHealth应用程序通过遥感,连续监控和数据分析为客户提供个性化和预防性的数字医疗服务。智能EHealth应用程序从多种模态感知输入数据,将数据传输到边缘和/或云节点,并使用计算密集型机器学习(ML)算法处理数据。连续的嘈杂输入数据,不可靠的网络连接,ML算法的计算要求以及传感器 - 边缘云层之间的计算放置选择会影响ML驱动的EHEADH应用程序的效率。在本章中,我们介绍了以优化的计算放置,准确性绩效权衡的探索以及用于ML驱动的EHEADH应用程序的跨层次感觉的合作式化的技术。我们通过传感器 - 边缘云框架进行客观疼痛评估案例研究,证明了在日常设置中智能eHealth应用程序的实际用例。
translated by 谷歌翻译
健康监测应用程序越来越依赖机器学习技术来学习日常环境中的最终用户生理和行为模式。考虑到可穿戴设备在监视人体参数中的重要作用,可以利用在设备学习中为行为和生理模式构建个性化模型,并同时为用户提供数据隐私。但是,大多数这些可穿戴设备的资源限制都阻止了对它们进行在线学习的能力。为了解决这个问题,需要从算法的角度重新考虑机器学习模型,以适合在可穿戴设备上运行。高维计算(HDC)为资源受限设备提供了非常适合的设备学习解决方案,并为隐私保护个性化提供了支持。我们的基于HDC的方法具有灵活性,高效率,弹性和性能,同时可以实现设备个性化和隐私保护。我们使用三个案例研究评估方法的功效,并表明我们的系统将培训的能源效率提高了高达$ 45.8 \ times $,与最先进的深神经网络(DNN)算法相比准确性。
translated by 谷歌翻译
自从Navier Stokes方程的推导以来,已经有可能在数值上解决现实世界的粘性流问题(计算流体动力学(CFD))。然而,尽管中央处理单元(CPU)的性能取得了迅速的进步,但模拟瞬态流量的计算成本非常小,时间/网格量表物理学仍然是不现实的。近年来,机器学习(ML)技术在整个行业中都受到了极大的关注,这一大浪潮已经传播了流体动力学界的各种兴趣。最近的ML CFD研究表明,随着数据驱动方法的训练时间和预测时间之间的间隔增加,完全抑制了误差的增加是不现实的。应用ML的实用CFD加速方法的开发是剩余的问题。因此,这项研究的目标是根据物理信息传递学习制定现实的ML策略,并使用不稳定的CFD数据集验证了该策略的准确性和加速性能。该策略可以在监视跨耦合计算框架中管理方程的残差时确定转移学习的时间。因此,我们的假设是可行的,即连续流体流动时间序列的预测是可行的,因为中间CFD模拟定期不仅减少了增加残差,还可以更新网络参数。值得注意的是,具有基于网格的网络模型的交叉耦合策略不会损害计算加速度的仿真精度。在层流逆流CFD数据集条件下,该模拟加速了1.8次,包括参数更新时间。此可行性研究使用了开源CFD软件OpenFOAM和开源ML软件TensorFlow。
translated by 谷歌翻译
激光加工是一种高度灵活的非接触式制造技术,在学术界和行业中广泛使用。由于光和物质之间的非线性相互作用,模拟方法非常重要,因为它们通过理解激光处理参数之间的相互关系来帮助增强加工质量。另一方面,实验处理参数优化建议对可用处理参数空间进行系统且耗时的研究。一种智能策略是采用机器学习(ML)技术来捕获Picsecond激光加工参数之间的关系,以找到适当的参数组合,以创建对工业级氧化铝陶瓷的所需削减,并具有深层,平滑和无缺陷的模式。激光参数,例如梁振幅和频率,扫描仪的传递速度以及扫描仪与样品表面的垂直距离的速度,用于预测深度,最高宽度和底部宽度使用ML型号雕刻通道。由于激光参数之间的复杂相关性,因此表明神经网络(NN)是预测输出最有效的。配备了ML模型,该模型可以捕获激光参数与雕刻通道尺寸之间的互连,可以预测所需的输入参数以实现目标通道几何形状。该策略大大降低了开发阶段实验激光加工的成本和精力,而不会损害准确性或性能。开发的技术可以应用于各种陶瓷激光加工过程。
translated by 谷歌翻译