Prior work has identified a resilient phenomenon that threatens the performance of human-AI decision-making teams: overreliance, when people agree with an AI, even when it is incorrect. Surprisingly, overreliance does not reduce when the AI produces explanations for its predictions, compared to only providing predictions. Some have argued that overreliance results from cognitive biases or uncalibrated trust, attributing overreliance to an inevitability of human cognition. By contrast, our paper argues that people strategically choose whether or not to engage with an AI explanation, demonstrating empirically that there are scenarios where AI explanations reduce overreliance. To achieve this, we formalize this strategic choice in a cost-benefit framework, where the costs and benefits of engaging with the task are weighed against the costs and benefits of relying on the AI. We manipulate the costs and benefits in a maze task, where participants collaborate with a simulated AI to find the exit of a maze. Through 5 studies (N = 731), we find that costs such as task difficulty (Study 1), explanation difficulty (Study 2, 3), and benefits such as monetary compensation (Study 4) affect overreliance. Finally, Study 5 adapts the Cognitive Effort Discounting paradigm to quantify the utility of different explanations, providing further support for our framework. Our results suggest that some of the null effects found in literature could be due in part to the explanation not sufficiently reducing the costs of verifying the AI's prediction.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The problem of adversarial defenses for image classification, where the goal is to robustify a classifier against adversarial examples, is considered. Inspired by the hypothesis that these examples lie beyond the natural image manifold, a novel aDversarIal defenSe with local impliCit functiOns (DISCO) is proposed to remove adversarial perturbations by localized manifold projections. DISCO consumes an adversarial image and a query pixel location and outputs a clean RGB value at the location. It is implemented with an encoder and a local implicit module, where the former produces per-pixel deep features and the latter uses the features in the neighborhood of query pixel for predicting the clean RGB value. Extensive experiments demonstrate that both DISCO and its cascade version outperform prior defenses, regardless of whether the defense is known to the attacker. DISCO is also shown to be data and parameter efficient and to mount defenses that transfers across datasets, classifiers and attacks.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Fighting online hate speech is a challenge that is usually addressed using Natural Language Processing via automatic detection and removal of hate content. Besides this approach, counter narratives have emerged as an effective tool employed by NGOs to respond to online hate on social media platforms. For this reason, Natural Language Generation is currently being studied as a way to automatize counter narrative writing. However, the existing resources necessary to train NLG models are limited to 2-turn interactions (a hate speech and a counter narrative as response), while in real life, interactions can consist of multiple turns. In this paper, we present a hybrid approach for dialogical data collection, which combines the intervention of human expert annotators over machine generated dialogues obtained using 19 different configurations. The result of this work is DIALOCONAN, the first dataset comprising over 3000 fictitious multi-turn dialogues between a hater and an NGO operator, covering 6 targets of hate.
translated by 谷歌翻译
随着深层技术的传播,这项技术变得非常易于访问和足够好,以至于对其恶意使用感到担忧。面对这个问题,检测锻造面孔对于确保安全和避免在全球和私人规模上避免社会政治问题至关重要。本文提出了一种使用卷积神经网络检测深击的解决方案,并为此目的开发了一个数据集-celeb -df。结果表明,在这些图像的分类中,总体准确性为95%,提出的模型接近于最新的现状,并且可以调整未来出现的操纵技术的可能性。。
translated by 谷歌翻译
机器学习的进步(ML)引起了人们对这项技术支持决策的浓厚兴趣。尽管复杂的ML模型提供的预测通常比传统工具的预测更准确,但这种模型通常隐藏了用户预测背后的推理,这可能导致采用和缺乏洞察力。在这种张力的激励下,研究提出了可解释的人工智能(XAI)技术,这些技术发现了ML发现的模式。尽管ML和XAI都有很高的希望,但几乎没有经验证据表明传统企业的好处。为此,我们分析了220,185家能源零售商的客户的数据,预测具有多达86%正确性的交叉购买(AUC),并表明XAI方法的Shap提供了为实际买家提供的解释。我们进一步概述了信息系统,XAI和关系营销中的研究的影响。
translated by 谷歌翻译
在微创手术中,视频分析的手术工作流程分割是一个经过深入研究的主题。常规方法将其定义为多类分类问题,其中各个视频帧被归因于手术期标签。我们引入了一种新颖的加强学习公式,以用于离线相过渡检索。我们没有尝试对每个视频框架进行分类,而是确定每个相转换的时间戳。通过构造,我们的模型不会产生虚假和嘈杂的相变,而是相邻的相位块。我们研究了该模型的两种不同配置。第一个不需要在视频中处理所有帧(在2个不同的应用程序中仅<60%和<20%的帧),而在最新的精度下略微产生结果。第二个配置处理所有视频帧,并以可比的计算成本优于最新技术。 We compare our method against the recent top-performing frame-based approaches TeCNO and Trans-SVNet on the public dataset Cholec80 and also on an in-house dataset of laparoscopic sacrocolpopexy.我们同时执行基于框架的(准确性,精度,召回和F1得分),也可以对我们的算法进行基于事件的(事件比率)评估。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
在双胞胎输血综合征(TTTS)中,单座管胎盘中的异常血管吻合可能会在两个胎儿之间产生不均匀的流量。在当前的实践中,通过使用激光消融闭合异常吻合来对TTT进行手术治疗。该手术在最小的侵入性中依赖于胎儿镜检查。有限的视野使吻合术识别成为外科医生的具有挑战性的任务。为了应对这一挑战,我们提出了一个基于学习的框架,用于视野扩展的体内胎儿镜框架注册。该框架的新颖性依赖于基于学习的关键点提案网络以及基于胎儿镜图像细分和(ii)不一致的同符的编码策略(i)无关的关键点。我们在来自6个不同女性的6个TTT手术的6个术中序列的数据集中验证了我们的框架,这是根据最新的最新算法状态,该算法依赖于胎盘血管的分割。与艺术的状态相比,提出的框架的性能更高,为稳健的马赛克在TTTS手术期间提供背景意识铺平了道路。
translated by 谷歌翻译