As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected individuals, potential adversaries could also exploit these recourses to compromise privacy. In this work, we make the first attempt at investigating if and how an adversary can leverage recourses to infer private information about the underlying model's training data. To this end, we propose a series of novel membership inference attacks which leverage algorithmic recourse. More specifically, we extend the prior literature on membership inference attacks to the recourse setting by leveraging the distances between data instances and their corresponding counterfactuals output by state-of-the-art recourse methods. Extensive experimentation with real world and synthetic datasets demonstrates significant privacy leakage through recourses. Our work establishes unintended privacy leakage as an important risk in the widespread adoption of recourse methods.
translated by 谷歌翻译
非政策评估(OPE)方法是评估高风险领域(例如医疗保健)中的政策的关键工具,在这些领域,直接部署通常是不可行的,不道德的或昂贵的。当期望部署环境发生变化(即数据集偏移)时,对于OPE方法,在此类更改中对策略进行强大的评估非常重要。现有的方法考虑对可以任意改变环境的任何可观察到的任何可观察到的属性的大量转变。这通常会导致对公用事业的高度悲观估计,从而使可能对部署有用的政策无效。在这项工作中,我们通过研究领域知识如何帮助提供对政策公用事业的更现实的估计来解决上述问题。我们利用人类的投入,在环境的哪些方面可能会发生变化,并适应OPE方法仅考虑这些方面的转变。具体而言,我们提出了一个新颖的框架,可靠的OPE(绳索),该框架认为基于用户输入的数据中的协变量子集,并估算了这些变化下最坏情况的效用。然后,我们为OPE开发了对OPE的计算有效算法,这些算法对上述强盗和马尔可夫决策过程的上述变化很强。我们还理论上分析了这些算法的样品复杂性。从医疗领域进行的合成和现实世界数据集进行了广泛的实验表明,我们的方法不仅可以捕获现实的数据集准确地转移,而且还会导致较少的悲观政策评估。
translated by 谷歌翻译
由于事后解释越来越多地用于了解图神经网络(GNN)的行为,因此评估GNN解释的质量和可靠性至关重要。但是,评估GNN解释的质量是具有挑战性的,因为现有的图形数据集对给定任务没有或不可靠的基础真相解释。在这里,我们介绍了一个合成图数据生成器ShapeGgen,该生成可以生成各种基准数据集(例如,不同的图形大小,度分布,同粒细胞与异性图)以及伴随着地面真相解释。此外,生成各种合成数据集和相应的基础真相解释的灵活性使我们能够模仿各种现实世界应用程序生成的数据。我们将ShapeGgen和几个现实图形数据集包括在开源图形图库GraphXai中。除了带有基础真相说明的合成和现实图形数据集外,GraphXAI还提供数据加载程序,数据处理功能,可视化器,GNN模型实现和评估指标,以基准基准GNN解释性方法的性能。
translated by 谷歌翻译
机器学习(ML)模型越来越多地用于在现实世界应用中做出关键决策,但它们也变得更加复杂,使它们更难理解。为此,已经提出了几种解释模型预测的技术。但是,从业人员努力利用解释,因为他们通常不知道该使用哪个,如何解释结果,并且可能没有足够的数据科学经验来获得解释。此外,大多数当前的作品都集中在生成一声解释上,并且不允许用户跟进并提出有关解释的细粒度问题,这可能会令人沮丧。在这项工作中,我们通过引入TalkTomodel:一个开放式对话系统来解决这些挑战,以了解机器学习模型。具体而言,TalkTomodel包括三个关键组成部分:1)用于参与对话的自然语言接口,使理解高度访问的ML模型,2)适应任何表格模型和数据集的对话引擎,解释自然语言,将其映射到适当的操作(例如,特征重要性解释,反事实说明,显示模型错误)并生成文本响应,3)执行组件运行操作并确保说明准确。我们对TalkTomodel进行了定量和人类的主题评估。我们发现该系统以高精度了解新颖数据集和模型上的用户问题,这表明了系统将其推广到新情况的能力。在人类评估中,有73%的医护人员(例如,医生和护士)同意他们将使用TalkTomodel对基线点击系统使用,而84.6%的ML研究生同意TalkTomodel更容易使用。
translated by 谷歌翻译
尽管在最近的文献中提出了几种类型的事后解释方法(例如,特征归因方法),但在系统地以有效且透明的方式进行系统基准测试这些方法几乎没有工作。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组件组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预训练的模型和最新功能属性方法的集合,(ii)开源实现22个定量指标,用于评估忠诚,稳定性(稳健性)和解释方法的公平性,以及(iii)有史以来第一个公共XAI XAI排行榜对基准解释。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准这些方法的透明度和可重复性。 OpenXAI数据集和数据加载程序,最先进的解释方法的实现和评估指标以及排行榜,可在https://open-xai.github.io/上公开获得。
translated by 谷歌翻译
深度神经网络的高度非线性性质使它们容易受到对抗例子的影响,并且具有不稳定的梯度,从而阻碍了可解释性。但是,解决这些问题的现有方法,例如对抗性训练,是昂贵的,并且通常会牺牲预测的准确性。在这项工作中,我们考虑曲率,这是编码非线性程度的数学数量。使用此功能,我们展示了低曲率的神经网络(LCNN),这些神经网络(LCNN)的曲率比标准模型大大低,同时表现出相似的预测性能,从而导致稳健性和稳定梯度,并且只有略有增加的训练时间。为了实现这一目标,我们最大程度地减少了与数据依赖性的上限在神经网络的曲率上,该曲率分解了其组成层的曲率和斜率方面的总体曲率。为了有效地最大程度地减少这种结合,我们介绍了两个新型的建筑组件:首先,一种称为中心软pplus的非线性性,是SoftPlus非线性的稳定变体,其次是Lipschitz构成的批处理标准化层。我们的实验表明,与标准的高曲率对应物相比,LCNN具有较低的曲率,更稳定的梯度和增加现成的对抗性鲁棒性,而不会影响预测性能。我们的方法易于使用,可以很容易地将其纳入现有的神经网络模型中。
translated by 谷歌翻译
预测模型越来越多地用于在医疗保健,金融和政策等高风险领域中做出各种结果决策。确保这些模型做出准确的预测,对数据的变化,不依赖虚假特征,并且不会过分区分少数群体,这变得至关重要。为此,最近的文献提出了几种涵盖各个领域的方法,例如解释性,公平性和鲁棒性。当这种方法迎合对用户对模型的理解时,需要以人为本。但是,一旦部署了监测机器学习的需求和挑战,就存在研究差距。为了填补这一差距,我们对13位从业人员进行了访谈研究,他们在部署ML模型并与跨越领域的客户互动,例如金融服务,医疗保健,招聘,在线零售,计算广告和对话助理等领域。我们确定了在现实世界应用中对模型监控的各种挑战和要求。具体而言,我们发现了模型监视系统的需求和挑战,以阐明监测观察结果对结果的影响。此外,此类见解必须是可行的,可靠的,可针对特定于域的用例定制,并认知考虑以避免信息超负荷。
translated by 谷歌翻译
A critical problem in post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, SHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods which demonstrates that no single method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
translated by 谷歌翻译
由于事后解释方法越来越多地被利用以在高风险环境中解释复杂的模型,因此确保在包括少数群体在内的各个种群亚组中,所得解释的质量始终高。例如,与与其他性别相关的实例(例如,女性)相关的实例(例如,女性)的说明不应该是与其他性别相关的解释。但是,几乎没有研究能够评估通过最先进的解释方法在输出的解释质量上是否存在这种基于群体的差异。在这项工作中,我们通过启动确定基于群体的解释质量差异的研究来解决上述差距。为此,我们首先概述了构成解释质量以及差异尤其有问题的关键属性。然后,我们利用这些属性提出了一个新的评估框架,该框架可以通过最新方法定量测量解释质量的差异。使用此框架,我们进行了严格的经验分析,以了解是否出现了解释质量的基于小组的差异。我们的结果表明,当所解释的模型复杂且高度非线性时,这种差异更可能发生。此外,我们还观察到某些事后解释方法(例如,综合梯度,外形)更有可能表现出上述差异。据我们所知,这项工作是第一个强调和研究解释质量差异的问题。通过这样做,我们的工作阐明了以前未开发的方式,其中解释方法可能在现实世界决策中引入不公平。
translated by 谷歌翻译
随着机器学习(ML)模型越来越多地用于做出结果决定,人们对开发可以为受影响个人提供求助的技术越来越兴趣。这些技术中的大多数提供了追索权,假设受影响的个体将实施规定的recourses \ emph {prirent}。但是,由于各种原因,要求将薪水提高\ $ 500的人可能会获得嘈杂和不一致的方式实施,这可能会获得晋升,而增加了505美元。在此激励的情况下,我们研究了面对嘈杂的人类反应时追索性无效的问题。更具体地说,我们从理论上和经验上分析了最新算法的行为,并证明这些算法产生的记录很可能是无效的(即,如果对它们做出的小变化,则可能导致负面结果) 。我们进一步提出了一个新颖的框架,期望嘈杂的响应(\ texttt {Expect}),该框架通过在嘈杂的响应中明确最大程度地减少追索性无效的可能性来解决上述问题。我们的框架可以确保最多$ r \%$的最多$ r $作为最终用户请求追索权的输入。通过这样做,我们的框架为最终用户提供了更大的控制权,可以在追索性成本和稳定性之间的稳定性之间进行权衡。具有多个现实世界数据集的实验评估证明了所提出的框架的功效,并验证了我们的理论发现。
translated by 谷歌翻译