Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts in the captured CT images and then impair the clinical treatment. Against this metal artifact reduction (MAR) task, the existing deep-learning-based methods have gained promising reconstruction performance. Nevertheless, there is still some room for further improvement of MAR performance and generalization ability, since some important prior knowledge underlying this specific task has not been fully exploited. Hereby, in this paper, we carefully analyze the characteristics of metal artifacts and propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts, i.e., rotationally symmetrical streaking patterns. The proposed method rationally adopts Fourier-series-expansion-based filter parametrization in artifact modeling, which can better separate artifacts from anatomical tissues and boost the model generalizability. Comprehensive experiments executed on synthesized and clinical datasets show the superiority of our method in detail preservation beyond the current representative MAR methods. Code will be available at \url{https://github.com/hongwang01/OSCNet}
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Neural network pruning has been a well-established compression technique to enable deep learning models on resource-constrained devices. The pruned model is usually specialized to meet specific hardware platforms and training tasks (defined as deployment scenarios). However, existing pruning approaches rely heavily on training data to trade off model size, efficiency, and accuracy, which becomes ineffective for federated learning (FL) over distributed and confidential datasets. Moreover, the memory- and compute-intensive pruning process of most existing approaches cannot be handled by most FL devices with resource limitations. In this paper, we develop FedTiny, a novel distributed pruning framework for FL, to obtain specialized tiny models for memory- and computing-constrained participating devices with confidential local data. To alleviate biased pruning due to unseen heterogeneous data over devices, FedTiny introduces an adaptive batch normalization (BN) selection module to adaptively obtain an initially pruned model to fit deployment scenarios. Besides, to further improve the initial pruning, FedTiny develops a lightweight progressive pruning module for local finer pruning under tight memory and computational budgets, where the pruning policy for each layer is gradually determined rather than evaluating the overall deep model structure. Extensive experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art baseline approaches, especially when compressing deep models to extremely sparse tiny models.
translated by 谷歌翻译
This paper focuses on the prevalent performance imbalance in the stages of incremental learning. To avoid obvious stage learning bottlenecks, we propose a brand-new stage-isolation based incremental learning framework, which leverages a series of stage-isolated classifiers to perform the learning task of each stage without the interference of others. To be concrete, to aggregate multiple stage classifiers as a uniform one impartially, we first introduce a temperature-controlled energy metric for indicating the confidence score levels of the stage classifiers. We then propose an anchor-based energy self-normalization strategy to ensure the stage classifiers work at the same energy level. Finally, we design a voting-based inference augmentation strategy for robust inference. The proposed method is rehearsal free and can work for almost all continual learning scenarios. We evaluate the proposed method on four large benchmarks. Extensive results demonstrate the superiority of the proposed method in setting up new state-of-the-art overall performance. \emph{Code is available at} \url{https://github.com/iamwangyabin/ESN}.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
最近,通过“向导”模拟游戏收集了一类以任务为导向的对话(TOD)数据集。但是,《巫师》数据实际上是模拟的数据,因此与现实生活中的对话根本不同,这些对话更加嘈杂和随意。最近,Seretod挑战赛是组织的,并发布了Mobilecs数据集,该数据集由来自中国移动的真实用户和客户服务人员之间的真实世界对话框组成。基于Mobilecs数据集,Seretod挑战具有两个任务,不仅评估了对话系统本身的构建,而且还检查了对话框成绩单中的信息提取,这对于建立TOD的知识库至关重要。本文主要介绍了Mobilecs数据集对这两项任务的基线研究。我们介绍了如何构建两个基线,遇到的问题以及结果。我们预计基线可以促进令人兴奋的未来研究,以建立针对现实生活任务的人类机器人对话系统。
translated by 谷歌翻译
沟通可以帮助代理商获得有关他人的信息,以便可以学习更好的协调行为。一些现有的工作会与其他人传达预测的未来轨迹,希望能为其他人做些更好的协调能力提供线索。但是,当对代理人同步处理时,有时会发生循环依赖性,因此很难协调决策。在本文中,我们提出了一种新颖的交流方案,顺序通信(SEQCOMM)。 Seqcomm不同步(高级代理在低级阶段之前做出决定),并有两个通信阶段。在谈判阶段,代理通过传达观测的隐藏状态并比较意图的价值来确定决策的优先级,这是通过对环境动态进行建模来获得的。在发射阶段,高级代理商领导着做出决策并与低级代理商进行交流。从理论上讲,我们证明Seqcomm学到的政策可以单调地改善并融合。从经验上讲,我们表明SEQCOMM在各种多机构合作任务中都优于现有方法。
translated by 谷歌翻译
交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,交叉点中对流量参与者(TPS)的轨迹数据集的需求很大。目前,城市地区的大多数交叉路口都配备了交通信号灯。但是,尚无用于信号交叉点的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建信号交叉数据集(SIND),其中包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行比较。 SIND的特征可以概括如下:1)信德提供了更全面的信息,包括交通信号灯状态,运动参数,高清(HD)地图等。2)TPS的类别是多种多样和特征的,其中比例是脆弱的道路使用者(VRU)最高为62.6%3)显示了多次交通信号灯违反非电动车辆的行为。我们认为,Sind将是对现有数据集的有效补充,可以促进有关自动驾驶的相关研究。该数据集可通过以下方式在线获得:https://github.com/sotif-avlab/sind
translated by 谷歌翻译
基于合奏的大规模模拟动态系统对于广泛的科学和工程问题至关重要。模拟中使用的常规数值求解器受到时间整合的步长显着限制,这会阻碍效率和可行性,尤其是在需要高精度的情况下。为了克服这一限制,我们提出了一种数据驱动的校正方法,该方法允许使用大型步骤,同时补偿了积分误差以提高精度。该校正器以矢量值函数的形式表示,并通过神经网络建模以回归相空间中的误差。因此,我们将校正神经矢量(Neurvec)命名。我们表明,Neurvec可以达到与传统求解器具有更大步骤尺寸的传统求解器相同的准确性。我们从经验上证明,Neurvec可以显着加速各种数值求解器,并克服这些求解器的稳定性限制。我们关于基准问题的结果,从高维问题到混乱系统,表明Neurvec能够捕获主要的误差项并保持整体预测的统计数据。
translated by 谷歌翻译