Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
In terms of artificial intelligence, there are several security and privacy deficiencies in the traditional centralized training methods of machine learning models by a server. To address this limitation, federated learning (FL) has been proposed and is known for breaking down ``data silos" and protecting the privacy of users. However, FL has not yet gained popularity in the industry, mainly due to its security, privacy, and high cost of communication. For the purpose of advancing the research in this field, building a robust FL system, and realizing the wide application of FL, this paper sorts out the possible attacks and corresponding defenses of the current FL system systematically. Firstly, this paper briefly introduces the basic workflow of FL and related knowledge of attacks and defenses. It reviews a great deal of research about privacy theft and malicious attacks that have been studied in recent years. Most importantly, in view of the current three classification criteria, namely the three stages of machine learning, the three different roles in federated learning, and the CIA (Confidentiality, Integrity, and Availability) guidelines on privacy protection, we divide attack approaches into two categories according to the training stage and the prediction stage in machine learning. Furthermore, we also identify the CIA property violated for each attack method and potential attack role. Various defense mechanisms are then analyzed separately from the level of privacy and security. Finally, we summarize the possible challenges in the application of FL from the aspect of attacks and defenses and discuss the future development direction of FL systems. In this way, the designed FL system has the ability to resist different attacks and is more secure and stable.
translated by 谷歌翻译
Deep learning methods have contributed substantially to the rapid advancement of medical image segmentation, the quality of which relies on the suitable design of loss functions. Popular loss functions, including the cross-entropy and dice losses, often fall short of boundary detection, thereby limiting high-resolution downstream applications such as automated diagnoses and procedures. We developed a novel loss function that is tailored to reflect the boundary information to enhance the boundary detection. As the contrast between segmentation and background regions along the classification boundary naturally induces heterogeneity over the pixels, we propose the piece-wise two-sample t-test augmented (PTA) loss that is infused with the statistical test for such heterogeneity. We demonstrate the improved boundary detection power of the PTA loss compared to benchmark losses without a t-test component.
translated by 谷歌翻译
循环闭合检测是在复杂环境中长期机器人导航的关键技术。在本文中,我们提出了一个全局描述符,称为正态分布描述符(NDD),用于3D点云循环闭合检测。描述符编码点云的概率密度分数和熵作为描述符。我们还提出了快速旋转对准过程,并将相关系数用作描述符之间的相似性。实验结果表明,我们的方法在准确性和效率上都优于最新点云描述符。源代码可用,可以集成到现有的LIDAR射测和映射(壤土)系统中。
translated by 谷歌翻译
在这项工作中,我们介绍了一个新颖的全球描述符,称为3D位置识别的稳定三角形描述符(STD)。对于一个三角形,其形状由侧面或包含角度的长度唯一决定。此外,三角形的形状对于刚性转换完全不变。基于此属性,我们首先设计了一种算法,以从3D点云中有效提取本地密钥点,并将这些关键点编码为三角形描述符。然后,通过匹配点云之间描述符的侧面长度(以及其他一些信息)来实现位置识别。从描述符匹配对获得的点对应关系可以在几何验证中进一步使用,从而大大提高了位置识别的准确性。在我们的实验中,我们将我们提出的系统与公共数据集(即Kitti,NCLT和Complex-ublan)和我们自我收集的数据集(即M2DP,扫描上下文)进行了广泛的比较(即M2DP,扫描上下文)(即带有非重复扫描固态激光雷达)。所有定量结果表明,性病具有更强的适应性,并且在其对应物方面的精度有了很大的提高。为了分享我们的发现并为社区做出贡献,我们在GitHub上开放代码:https://github.com/hku-mars/std。
translated by 谷歌翻译
我们提出了一个新颖的建筑,以实现密集的对应关系。当前的最新方法是基于变压器的方法,它们专注于功能描述符或成本量集合。但是,尽管关节聚集会通过提供一个人(即图像的结构或语义信息)或像素匹配的相似性来提高一个或另一个,但并非两者都聚集,但并非两者都汇总,尽管关节聚集会相互促进。在这项工作中,我们提出了一个基于变压器的新型网络,该网络以利用其互补信息的方式交织了两种形式的聚合。具体而言,我们设计了一个自我发项层,该层利用描述符来消除嘈杂的成本量,并且还利用成本量以促进准确匹配的方式汇总特征。随后的跨意思层执行进一步的聚合,该聚集在图像的描述上,并由早期层的聚合输出有助于。我们通过层次处理进一步提高了性能,在该处理中,更粗糙的聚合指导那些处于优质水平的过程。我们评估了所提出的方法对密集匹配任务的有效性,并在所有主要基准上实现最先进的性能。还提供了广泛的消融研究来验证我们的设计选择。
translated by 谷歌翻译
在本文中,我们提出了一种新的机构指导的半监督计数方法。首先,我们建立了一个可学习的辅助结构,即密度代理,将公认的前景区域特征带到相应的密度子类(代理)和推开背景的区域。其次,我们提出了密度引导的对比度学习损失,以巩固主链特征提取器。第三,我们通过使用变压器结构进一步完善前景特征来构建回归头。最后,提供了有效的噪声抑郁丧失,以最大程度地减少注释噪声的负面影响。对四个挑战性人群计数数据集进行的广泛实验表明,我们的方法在很大的边距中实现了与最先进的半监督计数方法相比最先进的性能。代码可用。
translated by 谷歌翻译
混合整数凸面和非线性程序MICP和MINLP具有表现力,但需要长时间解决时间。结合了数据驱动方法的求解器启发式方法的最新工作表明,有可能克服此问题,从而可以在更大规模的实际问题上进行应用。为了通过数据驱动的方法在线求解混合企业双线性程序,存在几种配方,包括具有互补约束(MPCC),混合智能编程(MIP)的数学编程。在这项工作中,我们将这些数据驱动方案的性能基于具有离散模式开关和避免碰撞限制的书架组织问题的性能。将成功率,最佳成本和解决时间与非DATA驱动方法进行比较。我们提出的方法被证明是用于书架问题的机器人臂的高级计划者。
translated by 谷歌翻译
本文着重于当前过度参数化的阴影去除模型的局限性。我们提出了一个新颖的轻型深神经网络,该网络在实验室色彩空间中处理阴影图像。提出的称为“实验室网络”的网络是由以下三个观察结果激励的:首先,实验室颜色空间可以很好地分离亮度信息和颜色属性。其次,顺序堆叠的卷积层无法完全使用来自不同接受场的特征。第三,非阴影区域是重要的先验知识,可以减少阴影和非阴影区域之间的剧烈差异。因此,我们通过涉及两个分支结构的结构来设计实验室网络:L和AB分支。因此,与阴影相关的亮度信息可以很好地处理在L分支中,而颜色属性则很好地保留在AB分支中。此外,每个分支由几个基本块,局部空间注意模块(LSA)和卷积过滤器组成。每个基本块由多个平行的扩张扩张率的扩张卷积组成,以接收不同的接收场,这些接收场具有不同的网络宽度,以节省模型参数和计算成本。然后,构建了增强的通道注意模块(ECA),以从不同的接受场聚集特征,以更好地去除阴影。最后,进一步开发了LSA模块,以充分利用非阴影区域中的先前信息来清洁阴影区域。我们在ISTD和SRD数据集上执行广泛的实验。实验结果表明,我们的实验室网络井胜过最先进的方法。同样,我们的模型参数和计算成本降低了几个数量级。我们的代码可在https://github.com/ngrxmu/lab-net上找到。
translated by 谷歌翻译