Transformer models have achieved great success across many NLP problems. However, previous studies in automated ICD coding concluded that these models fail to outperform some of the earlier solutions such as CNN-based models. In this paper we challenge this conclusion. We present a simple and scalable method to process long text with the existing transformer models such as BERT. We show that this method significantly improves the previous results reported for transformer models in ICD coding, and is able to outperform one of the prominent CNN-based methods.
translated by 谷歌翻译
Path planning in the multi-robot system refers to calculating a set of actions for each robot, which will move each robot to its goal without conflicting with other robots. Lately, the research topic has received significant attention for its extensive applications, such as airport ground, drone swarms, and automatic warehouses. Despite these available research results, most of the existing investigations are concerned with the cases of robots with a fixed movement speed without considering uncertainty. Therefore, in this work, we study the problem of path-planning in the multi-robot automatic warehouse context, which considers the time-varying and uncertain robots' movement speed. Specifically, the path-planning module searches a path with as few conflicts as possible for a single agent by calculating traffic cost based on customarily distributed conflict probability and combining it with the classic A* algorithm. However, this probability-based method cannot eliminate all conflicts, and speed's uncertainty will constantly cause new conflicts. As a supplement, we propose the other two modules. The conflict detection and re-planning module chooses objects requiring re-planning paths from the agents involved in different types of conflicts periodically by our designed rules. Also, at each step, the scheduling module fills up the agent's preserved queue and decides who has a higher priority when the same element is assigned to two agents simultaneously. Finally, we compare the proposed algorithm with other algorithms from academia and industry, and the results show that the proposed method is validated as the best performance.
translated by 谷歌翻译
Neuroevolution has greatly promoted Deep Neural Network (DNN) architecture design and its applications, while there is a lack of methods available across different DNN types concerning both their scale and performance. In this study, we propose a self-adaptive neuroevolution (SANE) approach to automatically construct various lightweight DNN architectures for different tasks. One of the key settings in SANE is the search space defined by cells and organs self-adapted to different DNN types. Based on this search space, a constructive evolution strategy with uniform evolution settings and operations is designed to grow DNN architectures gradually. SANE is able to self-adaptively adjust evolution exploration and exploitation to improve search efficiency. Moreover, a speciation scheme is developed to protect evolution from early convergence by restricting selection competition within species. To evaluate SANE, we carry out neuroevolution experiments to generate different DNN architectures including convolutional neural network, generative adversarial network and long short-term memory. The results illustrate that the obtained DNN architectures could have smaller scale with similar performance compared to existing DNN architectures. Our proposed SANE provides an efficient approach to self-adaptively search DNN architectures across different types.
translated by 谷歌翻译
We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
translated by 谷歌翻译
With the advanced request to employ a team of robots to perform a task collaboratively, the research community has become increasingly interested in collaborative simultaneous localization and mapping. Unfortunately, existing datasets are limited in the scale and variation of the collaborative trajectories, even though generalization between inter-trajectories among different agents is crucial to the overall viability of collaborative tasks. To help align the research community's contributions with realistic multiagent ordinated SLAM problems, we propose S3E, a large-scale multimodal dataset captured by a fleet of unmanned ground vehicles along four designed collaborative trajectory paradigms. S3E consists of 7 outdoor and 5 indoor sequences that each exceed 200 seconds, consisting of well temporal synchronized and spatial calibrated high-frequency IMU, high-quality stereo camera, and 360 degree LiDAR data. Crucially, our effort exceeds previous attempts regarding dataset size, scene variability, and complexity. It has 4x as much average recording time as the pioneering EuRoC dataset. We also provide careful dataset analysis as well as baselines for collaborative SLAM and single counterparts. Data and more up-to-date details are found at https://github.com/PengYu-Team/S3E.
translated by 谷歌翻译
6G时代的语义沟通被认为是一个有希望的沟通范式,可以突破传统通信的瓶颈。但是,其在多用户方案中的应用程序,尤其是广播案例,仍未探索。为了有效利用语义沟通启用的好处,在本文中,我们提出了一个一对一的语义通信系统。具体而言,我们建议使用一个启用的深神经网络(DNN),称为MR \ _DeepSc。通过为不同用户的语义功能利用语义功能,基于预训练的模型即Distilbert的语义识别器是为了区分不同用户的。此外,采用转移学习来加快新接收器网络的培训。仿真结果表明,在不同的通道条件下,提出的MR \ _DeepSc可以比其他基准测试获得最佳性能,尤其是在低信噪比(SNR)方面。
translated by 谷歌翻译
已经提出了多个草图数据集,以了解人们如何绘制3D对象。但是,这样的数据集通常是小规模的,并且覆盖了一小部分对象或类别。此外,这些数据集包含大多来自专家用户的徒手草图,因此很难比较专家和新手用户的图纸,而这种比较对于告知对任何一个用户组的基于草图的界面更为有效的接口至关重要。这些观察结果激发了我们分析具有和没有足够绘图技能的人的不同程度的素描3D对象。我们邀请了70个新手用户和38位专家用户素描136 3D对象,这些对象是从多个视图中呈现的362张图像。这导致了3,620个徒手多视图草图的新数据集,在某些视图下,它们在其相应的3D对象上注册。我们的数据集比现有数据集大的数量级。我们在三个级别(即在空间和时间特征下以及跨越创建者组的内部和范围内)分析了三个级别的收集数据。我们发现,专业人士和新手的图纸在本质和外在的中风级别上显示出显着差异。我们在两个应用程序中演示了数据集的有用性:(i)徒手式的草图合成,(ii)将其作为基于草图的3D重建的潜在基准。我们的数据集和代码可在https://chufengxiao.github.io/differsketching/上获得。
translated by 谷歌翻译
近年来,商业上可用和负担得起的四足动物机器人激增,其中许多平台在研究和行业中都被积极使用。随着腿部机器人的可用性的增长,对这些机器人能够执行有用技能的控制器的需求也是如此。但是,大多数用于控制器开发的基于学习的框架都集中在培训机器人特定的控制器上,该过程需要为每个新机器人重复。在这项工作中,我们引入了一个用于训练四足机器人的广义运动(Genloco)控制器的框架。我们的框架合成了可以部署在具有相似形态的各种四足动物的机器人上的通用运动控制器。我们提出了一种简单但有效的形态随机化方法,该方法在程序上生成了一组训练的模拟机器人。我们表明,通过对这套模拟机器人进行训练,我们的模型获得了更多的通用控制策略,这些策略可以直接转移到具有多种形态的新型模拟和真实世界机器人中,在训练过程中未观察到。
translated by 谷歌翻译
细粒度的视觉分类(FGVC)旨在识别类似下属类别的对象,这对于人类的准确自动识别需求而言是挑战性和实用性的。大多数FGVC方法都集中在判别区域开采的注意力机制研究上,同时忽略了它们的相互依赖性和组成的整体对象结构,这对于模型的判别信息本地化和理解能力至关重要。为了解决上述限制,我们建议结构信息建模变压器(SIM-TRANS)将对象结构信息纳入变压器,以增强判别性表示学习,以包含外观信息和结构信息。具体而言,我们将图像编码为一系列贴片令牌,并使用两个精心设计的模块构建强大的视觉变压器框架:(i)提出了结构信息学习(SIL)模块以挖掘出在该模块中的空间上下文关系,对象范围借助变压器的自我发项权重,进一步注入导入结构信息的模型; (ii)引入了多级特征增强(MFB)模块,以利用类中多级特征和对比度学习的互补性,以增强功能鲁棒性,以获得准确的识别。提出的两个模块具有轻加权,可以插入任何变压器网络并轻松地端到端训练,这仅取决于视觉变压器本身带来的注意力重量。广泛的实验和分析表明,所提出的SIM-TRANS在细粒度的视觉分类基准上实现了最先进的性能。该代码可在https://github.com/pku-icst-mipl/sim-trans_acmmm2022上获得。
translated by 谷歌翻译
工业推荐系统通常提出包含来自多个子系统的结果的混合列表。实际上,每个子系统都使用自己的反馈数据进行了优化,以避免不同子系统之间的干扰。但是,我们认为,由于\ textit {数据稀疏},此类数据使用可能会导致次优的在线性能。为了减轻此问题,我们建议从包含网络尺度和长期印象数据的\ textit {super-domain}中提取知识,并进一步协助在线推荐任务(下游任务)。为此,我们提出了一个新颖的工业\ textbf {k} nowl \ textbf {e} dge \ textbf {e} xtraction和\ textbf {p} lugging(\ textbf {keep})框架,这是一个两阶段的框架其中包括1)超级域上有监督的预训练知识提取模块,以及2)将提取的知识纳入下游模型的插件网络。这使得对在线推荐的逐步培训变得友好。此外,我们设计了一种有效的经验方法,用于在大规模工业系统中实施Keep时保持和介绍我们的动手经验。在两个现实世界数据集上进行的实验表明,保持可以实现有希望的结果。值得注意的是,Keep也已部署在阿里巴巴的展示广告系统上,带来了$+5.4 \%$ CTR和$+4.7 \%\%$ rpm的提升。
translated by 谷歌翻译