Alignment between image and text has shown promising improvements on patch-level pre-trained document image models. However, investigating more effective or finer-grained alignment techniques during pre-training requires a large amount of computation cost and time. Thus, a question naturally arises: Could we fine-tune the pre-trained models adaptive to downstream tasks with alignment objectives and achieve comparable or better performance? In this paper, we propose a new model architecture with alignment-enriched tuning (dubbed AETNet) upon pre-trained document image models, to adapt downstream tasks with the joint task-specific supervised and alignment-aware contrastive objective. Specifically, we introduce an extra visual transformer as the alignment-ware image encoder and an extra text transformer as the alignment-ware text encoder before multimodal fusion. We consider alignment in the following three aspects: 1) document-level alignment by leveraging the cross-modal and intra-modal contrastive loss; 2) global-local alignment for modeling localized and structural information in document images; and 3) local-level alignment for more accurate patch-level information. Experiments on various downstream tasks show that AETNet can achieve state-of-the-art performance on various downstream tasks. Notably, AETNet consistently outperforms state-of-the-art pre-trained models, such as LayoutLMv3 with fine-tuning techniques, on three different downstream tasks.
translated by 谷歌翻译
具有对比性学习目标的预训练方法在对话了解任务中表现出了显着的成功。但是,当前的对比学习仅将自调查的对话样本视为正样本,并将所有其他对话样本视为负面样本,即使在语义上相关的对话框中,也会强制执行不同的表示。在本文中,我们提出了一个树木结构化的预培训对话模型Space-2,该模型从有限标记的对话框和大规模的无标记的对话框COLPORA通过半监督的对比度预培训来学习对话框表示。具体而言,我们首先定义一个通用的语义树结构(STS),以统一不同对话框数据集的注释模式,以便可以利用所有标记数据中存储的丰富结构信息。然后,我们提出了一个新颖的多视图分数功能,以增加共享类似STS的所有可能对话框的相关性,并且在监督的对比预训练期间仅推开其他完全不同的对话框。为了充分利用未标记的对话,还增加了基本的自我监督对比损失,以完善学习的表示。实验表明,我们的方法可以在DialogLue基准测试中实现新的最新结果,该基准由七个数据集和四个流行的对话框组成。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/space-2上发布代码和数据。
translated by 谷歌翻译
由于非平稳性,现实世界多变量时间序列(MTS)的分布会随着时间而变化,称为分布漂移。大多数现有的MT预测模型都会极大地遭受分销漂移的影响,并随着时间的推移降低了预测性能。现有方法通过适应最新到达数据或根据未来数据得出的元知识进行自我纠正来解决分布漂移。尽管在MT的预测中取得了巨大的成功,但这些方法几乎无法捕获固有的分布变化,尤其是从分布的角度来看。因此,我们提出了一个新型的框架时间条件变化自动编码器(TCVAE),以对MTS中历史观察结果和未来数据之间的动态分布依赖性进行建模,并将依赖性作为时间条件分布推断为利用潜在变量。具体而言,新型的颞鹰注意机制代表了随后馈入馈送前网络的时间因素,以估计潜在变量的先前高斯分布。时间因素的表示进一步动态地调整了基于变压器的编码器和解码器的结构,以利用门控注意机制来变化。此外,我们引入条件连续归一化流量,以将先前的高斯转化为复杂且无形式的分布,以促进对时间条件分布的灵活推断。在六个现实世界MTS数据集上进行的广泛实验表明,与最先进的MTS预测基线相比,TCVAE的出色鲁棒性和有效性。我们进一步说明了TCVAE通过多方面的案例研究和现实情况下的可视化来说明TCVAE的适用性。
translated by 谷歌翻译
基于AI的蛋白质结构预测管道(例如AlphaFold2)已达到了几乎实验的准确性。这些高级管道主要依赖于多个序列比对(MSA)和模板作为输入来从同源序列中学习共进化信息。但是,从蛋白质数据库中搜索MSA和模板很耗时,通常需要数十分钟。因此,我们尝试通过仅使用蛋白质的主要序列来探索快速蛋白质结构预测的极限。提出了Helixfold单一的形式将大规模蛋白质语言模型与AlphaFold2的优质几何学习能力相结合。我们提出的方法,Helixfold单个,首先预先培训是一种大规模蛋白质语言模型(PLM),使用了数以千计的主要序列利用自我监督的学习范式,将用作MSA和模板的替代方法共同进化信息。然后,通过将预训练的PLM和AlphaFold2的必需组件组合在一起,我们获得了一个端到端可区分模型,以仅从主要序列预测原子的3D坐标。 Helixfold-Single在数据集CASP14和Cameo中得到了验证,通过基于MSA的方法,具有大型同源家庭的基于MSA的方法,从而实现了竞争精度。此外,与主流管道进行蛋白质结构预测相比,Helixfold单个的时间比主流管道的时间少得多,这表明其在需要许多预测的任务中的潜力。 HelixFold-Single的守则可在https://github.com/paddlepaddle/paddlehelix/tree/dev/dev/pprotein_folding/helixfold-single上获得,我们还在https://paddlehelix.baidu.com上提供稳定的Web服务。 /app/drug/protein-single/prevast。
translated by 谷歌翻译
现有的自我监督的单眼估计方法可以摆脱昂贵的注释并获得令人鼓舞的结果。但是,当直接采用接受固定分辨率训练的模型以评估其他不同决议时,这些方法会遭受严重的性能降解。在本文中,我们通过学习场景深度的规模不变性,提出了一个分辨率自适应自我监督的单眼估计方法(RA-DEPTH)。具体而言,我们提出了一种简单而有效的数据增强方法,以生成具有任意尺度的同一场景的图像。然后,我们开发了一个双重高分辨率网络,该网络使用具有密集交互的多路径编码器和解码器来汇总多尺度特征,以进行准确的深度推理。最后,为了明确了解场景深度的规模不变性,我们在具有不同尺度的深度预测上制定了跨尺度的深度一致性损失。对Kitti,Make3D和NYU-V2数据集进行了广泛的实验表明,RA-DEPTH不仅可以实现最新的性能,而且还表现出很好的解决能力。
translated by 谷歌翻译
会话推荐系统(CRS)旨在捕获用户的当前意图,并通过实时多转交流交互提供建议。作为人机互动系统,CRS必须改善用户体验。但是,大多数CRS方法忽略了用户体验的重要性。在本文中,我们为CRS提出了两个关键点,以改善用户体验:(1)像人类一样说话,人类可以根据当前的对话环境以不同的风格说话。 (2)识别精细颗粒的意图,即使对于相同的话语,不同的用户也具有多种良好的意图,这与用户的固有偏好有关。根据观察结果,我们提出了一个新颖的CRS模型,即创建的定制对话推荐系统(CCRS),该系统从三个角度从三个角度定制了用户的CRS模型。对于类似人类的对话服务,我们提出了多式对话响应生成器,该响应响应生成器选择了语音发言的上下文感知语言风格。为了提供个性化的建议,我们在用户固有的偏好的指导下从对话上下文中提取用户当前的细粒度意图。最后,为了自定义每个用户的模型参数,我们从元学习的角度训练模型。广泛的实验和一系列分析表明,我们的CCR在推荐和对话服务上的优势。
translated by 谷歌翻译
在本文中,我们介绍了VCSL(视频复制段本地化),这是一种新的综合段级注释的视频复制数据集。与受视频级注释或小规模限制的现有复制检测数据集相比,VCSL不仅具有两个段级标签的数据级,其中有160k现实的视频副本对,其中包含超过280k的本地化copied seggment对,而且还包含超过280k涵盖各种视频类别和各种视频持续时间。每个收集的视频对中的所有复制段均经过手动提取,并伴随着精确注释的启动和结束时间戳。除了数据集外,我们还提出了一种新颖的评估协议,该协议可以更好地衡量视频对之间复制重叠段的预测准确性,并在不同情况下显示出改善的适应性。通过使用拟议的数据集和评估指标对几个基线和最先进的细分级视频副本检测方法进行基准测试,我们提供了一项全面的分析,可以揭示当前方法的优势和劣势作品。 VCSL数据集,公制和基准代码均在https://github.com/alipay/vcsl上公开获得。
translated by 谷歌翻译
人类移动性数据从兴趣点累积(POI)Chee-Ins为用户行为理解提供了很大的机会。然而,实际移动数据中的数据质量问题(例如,地理位置信息丢失,虚幻的检查,数据稀疏)限制了现有的POI导向研究的有效性,例如POI推荐和位置预测,当应用于真实应用时。为此,在本文中,我们开发了一个名为BI-STDDP的模型,可以集成双向时空依赖和用户的动态偏好,以识别用户已经访问的缺失的POI登记入住,其中时间。具体地,我们首先利用POI的双向全局空间和局部时间信息来捕获复杂的依赖关系。然后,将与用户和POI信息组合的目标时间模式被馈送到多层网络中以捕获用户的动态偏好。此外,动态偏好被转换为与依赖关系相同的空间以形成最终模型。最后,在三个大规模的现实世界数据集中评估所提出的模型,结果表明,与最先进的方法相比,我们模型的显着改进。此外,值得注意的是,所提出的模型可以自然地扩展,以解决具有竞争性表现的POI推荐和位置预测任务。
translated by 谷歌翻译
如今,知识图(KGS)一直在AI相关的应用中发挥关键作用。尽管尺寸大,但现有的公斤远非完全和全面。为了不断丰富KG,通常使用自动知识结构和更新机制,这不可避免地带来充足的噪音。然而,大多数现有知识图形嵌入(KGE)方法假设KGS中的所有三重事实都是正确的,并且在不考虑噪声和知识冲突的情况下将实体和关系投入到低维空间。这将导致kgs的低质量和不可靠的表示。为此,本文提出了一般的多任务加固学习框架,这可以大大缓解嘈杂的数据问题。在我们的框架中,我们利用强化学习来选择高质量的知识三分石,同时过滤出嘈杂的。此外,为了充分利用语义类似的关系之间的相关性,在具有多任务学习的集体方式中训练了类似关系的三重选择过程。此外,我们扩展了流行的KGE Models Transe,Distmult,与所提出的框架耦合和旋转。最后,实验验证表明,我们的方法能够增强现有的KGE模型,可以在嘈杂的情景中提供更强大的KGS表示。
translated by 谷歌翻译
非法车辆停车是世界上主要城市面临的常见城市问题,因为它导致空气污染和交通事故。政府高度依赖于积极的人类努力,以检测非法停车活动。然而,这种方法对于覆盖一个大城市来说,这一方法非常无效,因为警方必须巡逻整个城市道路。 Mobikike的大规模和高质量的共享自行车轨迹为我们提供了一个独特的机会,可以设计无处不在的非法停车检测方法,因为大多数非法停车处发生在路边,对自行车用户产生重大影响。检测结果可以指导巡逻计划,即将巡逻警察发送到具有更高的非法停车风险的地区,进一步提高巡逻效率。灵感来自这个想法,在建议的框架中采用了三个主要组件:1)〜{\ em轨迹预处理},它过滤了异常GPS点,执行Map-匹配,并构建轨迹索引; 2)〜{\ em非法停车检测},模拟正常轨迹,从评估轨迹提取特征,并利用基于试验的方法来发现非法停车事件; 3)〜{\ em巡逻计划},它利用检测结果作为参考上下文,并将调度任务作为一种多智能体增强学习问题来指导巡逻警察。最后,提出了广泛的实验以验证非法停车检测的有效性,以及巡逻效率的提高。
translated by 谷歌翻译