Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner.
translated by 谷歌翻译
最近的成功表明,可以通过文本提示来操纵图像,例如,在雨天的晴天,在雨天中被操纵到同一场景中,这是由文本输入“下雨”驱动的雨天。这些方法经常利用基于样式的图像生成器,该生成器利用多模式(文本和图像)嵌入空间。但是,我们观察到,这种文本输入通常在提供和综合丰富的语义提示时被瓶颈瓶颈,例如将大雨与雨雨区分开。为了解决这个问题,我们主张利用另一种方式,声音,在图像操纵中具有显着优势,因为它可以传达出比文本更多样化的语义提示(生动的情感或自然世界的动态表达)。在本文中,我们提出了一种新颖的方法,该方法首先使用声音扩展了图像文本接头嵌入空间,并应用了一种直接的潜在优化方法来根据音频输入(例如雨的声音)操纵给定的图像。我们的广泛实验表明,我们的声音引导的图像操纵方法在语义和视觉上比最先进的文本和声音引导的图像操纵方法产生更合理的操作结果,这通过我们的人类评估进一步证实。我们的下游任务评估还表明,我们学到的图像文本单嵌入空间有效地编码声音输入。
translated by 谷歌翻译
Stylegan最近的成功表明,预训练的Stylegan潜在空间对现实的视频生成很有用。但是,由于难以确定stylegan潜在空间的方向和幅度,因此视频中产生的运动通常在语义上没有意义。在本文中,我们提出了一个框架来通过利用多模式(声音图像文本)嵌入空间来生成现实视频。由于声音提供了场景的时间上下文,因此我们的框架学会了生成与声音一致的视频。首先,我们的声音反演模块将音频直接映射到Stylegan潜在空间中。然后,我们结合了基于夹子的多模式嵌入空间,以进一步提供视听关系。最后,提出的帧发电机学会在潜在空间中找到轨迹,该空间与相应的声音相干,并以层次结构方式生成视频。我们为声音引导的视频生成任务提供新的高分辨率景观视频数据集(视听对)。实验表明,我们的模型在视频质量方面优于最新方法。我们进一步显示了几种应用程序,包括图像和视频编辑,以验证我们方法的有效性。
translated by 谷歌翻译
最近的生成模型的成功表明,利用多模态嵌入空间可以使用文本信息操纵图像。然而,由于源的动态特性,使用其他来源而不是声音的文本来操纵图像,而不是声音,并不容易。特别是,声音可以传达真实世界的生动情感和动态表达。在这里,我们提出了一个框架,该框架将声音直接编码为多模态(图像文本)嵌入空间,并从空间操纵图像。我们的音频编码器受过培训以产生来自音频输入的潜在表示,该音频输入被强制与多模式嵌入空间中的图像和文本表示对齐。我们使用基于对齐的嵌入式的直接潜在优化方法进行声音引导图像操纵。我们还表明,我们的方法可以混合文本和音频模态,这丰富了各种图像修改。我们验证了定量和定性的声音引导图像操纵的有效性。我们还表明,我们的方法可以混合不同的模态,即文本和音频,这丰富了图像修改的各种。零射频分类和语义级图像分类的实验表明,我们所提出的模型优于其他文本和声音引导最先进的方法。
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Deep neural networks have been successfully adopted to diverse domains including pathology classification based on medical images. However, large-scale and high-quality data to train powerful neural networks are rare in the medical domain as the labeling must be done by qualified experts. Researchers recently tackled this problem with some success by taking advantage of models pre-trained on large-scale general domain data. Specifically, researchers took contrastive image-text encoders (e.g., CLIP) and fine-tuned it with chest X-ray images and paired reports to perform zero-shot pathology classification, thus completely removing the need for pathology-annotated images to train a classification model. Existing studies, however, fine-tuned the pre-trained model with the same contrastive learning objective, and failed to exploit the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy based on sentence sampling and positive-pair loss relaxation for improving the downstream zero-shot pathology classification performance, which can be applied to any pre-trained contrastive image-text encoders. Our method consistently showed dramatically improved zero-shot pathology classification performance on four different chest X-ray datasets and 3 different pre-trained models (5.77% average AUROC increase). In particular, fine-tuning CLIP with our method showed much comparable or marginally outperformed to board-certified radiologists (0.619 vs 0.625 in F1 score and 0.530 vs 0.544 in MCC) in zero-shot classification of five prominent diseases from the CheXpert dataset.
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
Routine clinical visits of a patient produce not only image data, but also non-image data containing clinical information regarding the patient, i.e., medical data is multi-modal in nature. Such heterogeneous modalities offer different and complementary perspectives on the same patient, resulting in more accurate clinical decisions when they are properly combined. However, despite its significance, how to effectively fuse the multi-modal medical data into a unified framework has received relatively little attention. In this paper, we propose an effective graph-based framework called HetMed (Heterogeneous Graph Learning for Multi-modal Medical Data Analysis) for fusing the multi-modal medical data. Specifically, we construct a multiplex network that incorporates multiple types of non-image features of patients to capture the complex relationship between patients in a systematic way, which leads to more accurate clinical decisions. Extensive experiments on various real-world datasets demonstrate the superiority and practicality of HetMed. The source code for HetMed is available at https://github.com/Sein-Kim/Multimodal-Medical.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译