通过分析大量数据来提供决策支持,大数据正在改革许多工业域。大数据测试旨在确保大数据系统在维护数据的性能和质量时运行平稳且无错误。但是,由于数据的多样性和复杂性,测试大数据具有挑战性。虽然众多研究对大数据测试进行了综合审查,但解决了测试技术和挑战的综合性尚未混淆。因此,我们对大数据测试技术(2010年 - 2021年)进行了系统审查。本文通过突出显示每个处理阶段的技术来讨论测试数据的处理。此外,我们讨论了挑战和未来的方向。我们的发现表明,已经使用不同的功能,非功能性和组合(功能和非功能性)测试技术来解决与大数据相关的特定问题。同时,在MapReduce验证阶段,大多数测试挑战都面临。此外,组合测试技术是与其他技术相结合的应用技术之一(即随机测试,突变测试,输入空间分区和等价测试),以解决在大数据测试期间面临的各种功能故障挑战。
translated by 谷歌翻译
Deep learning approaches for spatio-temporal prediction problems such as crowd-flow prediction assumes data to be of fixed and regular shaped tensor and face challenges of handling irregular, sparse data tensor. This poses limitations in use-case scenarios such as predicting visit counts of individuals' for a given spatial area at a particular temporal resolution using raster/image format representation of the geographical region, since the movement patterns of an individual can be largely restricted and localized to a certain part of the raster. Additionally, current deep-learning approaches for solving such problem doesn't account for the geographical awareness of a region while modelling the spatio-temporal movement patterns of an individual. To address these limitations, there is a need to develop a novel strategy and modeling approach that can handle both sparse, irregular data while incorporating geo-awareness in the model. In this paper, we make use of quadtree as the data structure for representing the image and introduce a novel geo-aware enabled deep learning layer, GA-ConvLSTM that performs the convolution operation based on a novel geo-aware module based on quadtree data structure for incorporating spatial dependencies while maintaining the recurrent mechanism for accounting for temporal dependencies. We present this approach in the context of the problem of predicting spatial behaviors of an individual (e.g., frequent visits to specific locations) through deep-learning based predictive model, GADST-Predict. Experimental results on two GPS based trace data shows that the proposed method is effective in handling frequency visits over different use-cases with considerable high accuracy.
translated by 谷歌翻译
基于会话的推荐系统通过使用短期匿名会话建模用户行为和偏好来建立对用户的相关项目。现有方法利用图形神经网络(GNNS)传播和聚合来自邻居节点的信息I.E.,本地消息传递。这种基于图形的架构具有代表性限制,因为单个子图易于过度填写顺序依赖,而不是考虑不同会话中的项目之间的复杂转换。我们提出了一种新的技术,使变压器与目标关节GNN结合使用。这允许学习更丰富的表示,与Vanilla目标注意GNN相比,这转化为经验性能提升。我们的实验结果和消融表明,我们的建议方法与现有的现实世界基准数据集的现有方法具有竞争力,从而改善了基于图形的假设。代码在https://github.com/the-learning-machines/sbr
translated by 谷歌翻译