Developmental dysplasia of the hip (DDH) is a condition in infants where the femoral head is incorrectly located in the hip joint. We propose a deep learning algorithm for segmenting key structures within ultrasound images, employing this to calculate Femoral Head Coverage (FHC) and provide a screening diagnosis for DDH. To our knowledge, this is the first study to automate FHC calculation for DDH screening. Our algorithm outperforms the international state of the art, agreeing with expert clinicians on 89.8% of our test images.
translated by 谷歌翻译
深度学习模型,例如监督编码器样式网络,在医学图像细分中表现出令人鼓舞的性能,但具有高标签成本。我们提出了一个半监督语义分割框架Trisegnet。它在有限的标记数据和大量未标记的数据上使用Triple-View功能学习。 Triple-View架构由三个像素级分类器和一个低水平的共享体重学习模块组成。该模型首先用标记的数据初始化。标签处理,包括数据扰动,置信标签投票和注释的不自信标签检测,使该模型能够同时训练标签和未标记的数据。每个模型的信心通过功能学习的其他两个视图得到了提高。重复此过程,直到每个模型达到与对应物相同的置信度。此策略使得对通用医疗图像数据集的三次学习学习。定制重叠和基于边界的损失功能是根据培训的不同阶段量身定制的。分割结果将在四个公开可用的基准数据集上进行评估,包括超声,CT,MRI和组织学图像。重复的实验证明了拟议网络与其他半监督算法相比,在一系列评估措施中相比。
translated by 谷歌翻译
使用分散数据进行联合培训是一个有希望的新兴研究方向,可以减轻医疗领域的数据稀缺性。但是,与在一般对象识别任务中常见的大规模完全标记的数据相反,由于高注释成本,本地医疗数据集更有可能仅具有对一类兴趣类别的图像进行注释。在本文中,我们考虑了一个实用但不足的问题,在该问题中,代表性不足的课程只有很少的标签实例可用,并且仅存在于联合系统的一些客户中。我们表明,标准联合学习方法无法学习具有极端阶级失衡的强大多标签分类器,并通过提出一个新颖的联合学习框架FedFew来解决它。 FedFew由三个阶段组成,第一阶段利用联盟的自我监督学习学习课堂不可知的表示。在第二阶段,分散的部分标记数据被利用以学习基于能量的多标签分类器,用于公共类别。最后,根据能量检测到代表性不足的类别,并提出了基于原型的最近邻居模型以进行几次匹配。我们评估了FedFew在多标签胸部疾病分类任务上,并证明它的表现优于联合基准的大幅度。
translated by 谷歌翻译
This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.
translated by 谷歌翻译
Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word's visual makeup as a series of glyphs. To quantify the extent of this effect, we conduct a series of controlled experiments comparing character-aware vs. character-blind text encoders. In the text-only domain, we find that character-aware models provide large gains on a novel spelling task (WikiSpell). Transferring these learnings onto the visual domain, we train a suite of image generation models, and show that character-aware variants outperform their character-blind counterparts across a range of novel text rendering tasks (our DrawText benchmark). Our models set a much higher state-of-the-art on visual spelling, with 30+ point accuracy gains over competitors on rare words, despite training on far fewer examples.
translated by 谷歌翻译
We apply topological data analysis (TDA) to speech classification problems and to the introspection of a pretrained speech model, HuBERT. To this end, we introduce a number of topological and algebraic features derived from Transformer attention maps and embeddings. We show that a simple linear classifier built on top of such features outperforms a fine-tuned classification head. In particular, we achieve an improvement of about $9\%$ accuracy and $5\%$ ERR on four common datasets; on CREMA-D, the proposed feature set reaches a new state of the art performance with accuracy $80.155$. We also show that topological features are able to reveal functional roles of speech Transformer heads; e.g., we find the heads capable to distinguish between pairs of sample sources (natural/synthetic) or voices without any downstream fine-tuning. Our results demonstrate that TDA is a promising new approach for speech analysis, especially for tasks that require structural prediction.
translated by 谷歌翻译
Recent work has demonstrated that natural language processing techniques can support consumer protection by automatically detecting unfair clauses in the Terms of Service (ToS) Agreement. This work demonstrates that transformer-based ToS analysis systems are vulnerable to adversarial attacks. We conduct experiments attacking an unfair-clause detector with universal adversarial triggers. Experiments show that a minor perturbation of the text can considerably reduce the detection performance. Moreover, to measure the detectability of the triggers, we conduct a detailed human evaluation study by collecting both answer accuracy and response time from the participants. The results show that the naturalness of the triggers remains key to tricking readers.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Federated Learning (FL) enables the training of Deep Learning models without centrally collecting possibly sensitive raw data. This paves the way for stronger privacy guarantees when building predictive models. The most used algorithms for FL are parameter-averaging based schemes (e.g., Federated Averaging) that, however, have well known limits: (i) Clients must implement the same model architecture; (ii) Transmitting model weights and model updates implies high communication cost, which scales up with the number of model parameters; (iii) In presence of non-IID data distributions, parameter-averaging aggregation schemes perform poorly due to client model drifts. Federated adaptations of regular Knowledge Distillation (KD) can solve and/or mitigate the weaknesses of parameter-averaging FL algorithms while possibly introducing other trade-offs. In this article, we provide a review of KD-based algorithms tailored for specific FL issues.
translated by 谷歌翻译
We present a smoothly broken power law functional form that accurately models and extrapolates the scaling behaviors of deep neural networks (i.e. how the evaluation metric of interest varies as the amount of compute used for training, number of model parameters, training dataset size, or upstream performance varies) for each task within a large and diverse set of upstream and downstream tasks, in zero-shot, prompted, and fine-tuned settings. This set includes large-scale vision and unsupervised language tasks, diffusion generative modeling of images, arithmetic, and reinforcement learning. When compared to other functional forms for neural scaling behavior, this functional form yields extrapolations of scaling behavior that are considerably more accurate on this set. Moreover, this functional form accurately models and extrapolates scaling behavior that other functional forms are incapable of expressing such as the non-monotonic transitions present in the scaling behavior of phenomena such as double descent and the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Lastly, we use this functional form to glean insights about the limit of the predictability of scaling behavior. Code is available at https://github.com/ethancaballero/broken_neural_scaling_laws
translated by 谷歌翻译