考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
In this technical note, we introduce an improved variant of nearest neighbors for counterfactual inference in panel data settings where multiple units are assigned multiple treatments over multiple time points, each sampled with constant probabilities. We call this estimator a doubly robust nearest neighbor estimator and provide a high probability non-asymptotic error bound for the mean parameter corresponding to each unit at each time. Our guarantee shows that the doubly robust estimator provides a (near-)quadratic improvement in the error compared to nearest neighbor estimators analyzed in prior work for these settings.
translated by 谷歌翻译
自2016年成立以来,Alexa奖计划使数百名大学生能够通过Socialbot Grand Challenge探索和竞争以发展对话代理商。挑战的目的是建立能够与人类在流行主题上连贯而诱人的代理人20分钟,同时达到至少4.0/5.0的平均评分。但是,由于对话代理商试图帮助用户完成日益复杂的任务,因此需要新的对话AI技术和评估平台。成立于2021年的Alexa奖Taskbot Challenge建立在Socialbot Challenge的成功基础上,通过引入交互式协助人类进行现实世界烹饪和做自己动手做的任务的要求,同时同时使用语音和视觉方式。这项挑战要求TaskBots识别和理解用户的需求,识别和集成任务和域知识,并开发新的方式,不分散用户的注意力,而不必分散他们的任务,以及其他挑战。本文概述了Taskbot挑战赛,描述了使用Cobot Toolkit提供给团队提供的基础架构支持,并总结了参与团队以克服研究挑战所采取的方法。最后,它分析了比赛第一年的竞争任务机器人的性能。
translated by 谷歌翻译
我们提出了一种方法,用于在主动电分布网络中考虑使用脆弱节点识别的最佳DERS分配,并将这些节点命名为关键节点。这些关键节点的功率变化将显着影响其他链接节点的运行,因此这些节点适合使用,并且认为最适合DERS放置。我们在标准的IEEE-123测试馈线系统中证明了我们的方法评估。最初,我们使用图理论将分布系统划分为最佳微电网网络。使用图神经网络体系结构对分区进行了验证,以适当形成微电网。此外,使用有效的可测量分析(例如Granger因果关系),我们确定了分区的微电网中的关键节点和在这些节点上的DERS放置,从而提高了网络可靠性和弹性。此外,为了验证系统性能和能量弹性,我们计算了微电网网络的渗透阈值,该网络指示了在这些关键节点上掺入DER后系统弹性。这项提出的有关首先的方法可确保通过分布网络中数据驱动的分析方法来确定有效的微电网分配,关键节点的识别,最佳DERS分配和系统弹性评估。
translated by 谷歌翻译
最近,电分配系统被分布式能源(DER)广泛渗透,以满足能量需求,以一般的看法,即增强系统的弹性。但是,由于其间歇性可用性,天气状况的动态,非线性,复杂性的引入等各种因素,这可能是不利的。这需要对我们的方法在这里提出的对系统弹性的详细理解。我们介绍了一种使用复杂网络理论的方法,以确定与太阳能PV生成在各种不良配置下合并时分配系统的弹性。获得了不同条件的复杂相关网络,并计算了各种网络参数以识别这些网络的弹性。所提出的方法可以确定系统中太阳能电池板的托管能力,同时在不同的不需要条件下保持弹性有助于获得系统中太阳能电池板的最佳分配拓扑。所提出的方法还标识了对变化高度敏感的关键节点,并可能将系统推向非弹性。该框架在IEEE-123测试馈线系统上使用了使用GridLab-D生成的时间序列数据,并使用复杂的网络和机器学习模型进行了多种分析。
translated by 谷歌翻译
我们介绍了Net2Brain,这是一种图形和命令行的用户界面工具箱,用于比较人工深神经网络(DNNS)和人脑记录的代表空间。尽管不同的工具箱仅促进单个功能或仅关注一小部分监督图像分类模型,但Net2Brain允许提取600多个受过培训的DNN的激活,以执行各种视觉相关的任务(例如,语义段,深度估计,深度估计,深度估计,深度估计,估计,深度率,在图像和视频数据集上均具有动作识别等)。该工具箱在这些激活上计算代表性差异矩阵(RDM),并使用代表性相似性分析(RSA),加权RSA(在特定的ROI和探照灯搜索中)将其与大脑记录进行比较。此外,可以在工具箱中添加一个新的刺激和大脑记录数据集以进行评估。我们通过一个示例展示了如何使用Net2Brain的功能和优势来检验认知计算神经科学的假设。
translated by 谷歌翻译
三维(3D)医学图像的产生可能具有巨大的应用潜力,因为它考虑了3D解剖结构。但是,有两个问题可以防止有效培训3D医疗生成模型:(1)3D医学图像的获取和注释非常昂贵,导致培训图像不足,(2)大量参数是参与3D卷积。为了解决这两个问题,我们提出了一种名为3D Split&Shuffle-Gan的新型GAN模型。为了解决3D数据稀缺问题,我们首先使用丰富的图像切片预先培训二维(2D)GAN模型,并夸大2D卷积权重以改善3D GAN的初始化。为GAN模型的生成器和鉴别器提出了新型的3D网络体系结构,以显着减少参数的数量,同时保持图像生成的质量。研究了许多体重通胀策略和参数有效的3D架构。对心脏(Stanford Aimi冠状动脉钙)和大脑(阿尔茨海默氏病神经成像计划)的实验表明,所提出的方法会导致改善的3D图像产生质量,参数较少。
translated by 谷歌翻译
当今的最先进的视觉导航代理通常由大型深度学习模型端到端组成。这样的模型几乎没有关于学习的技能或对环境所采取的代理商的行为几乎没有解释性。尽管过去的作品探索了解释深度学习模型,但很少关注解释体现的AI系统,这通常涉及对环境结构,目标特征和行动的结果进行推理。在本文中,我们介绍了用于点目标和对象目标导航剂的具体代理(ISEE)的可解释性系统。我们使用ISEE来探测这些试剂产生的动态表示,以了解有关代理和环境的信息。我们在使用ISEE的情况下展示了有关导航剂的有趣见解,包括能够编码可到达位置的能力(避免障碍),目标的可见性,最初产卵位置的进展以及当我们掩盖关键关键时对代理行为的巨大影响个别神经元。该代码可在以下网址找到:https://github.com/allenai/isee
translated by 谷歌翻译
基于1-HOP邻居之间的消息传递(MP)范式交换信息的图形神经网络(GNN),以在每一层构建节点表示。原则上,此类网络无法捕获在图形上学习给定任务的可能或必需的远程交互(LRI)。最近,人们对基于变压器的图的开发产生了越来越多的兴趣,这些方法可以考虑超出原始稀疏结构以外的完整节点连接,从而实现了LRI的建模。但是,仅依靠1跳消息传递的MP-gnn与位置特征表示形式结合使用时通常在几个现有的图形基准中表现得更好,因此,限制了Transferter类似体系结构的感知效用和排名。在这里,我们介绍了5个图形学习数据集的远程图基准(LRGB):Pascalvoc-SP,Coco-SP,PCQM-Contact,Peptides-Func和肽结构,可以说需要LRI推理以在给定的任务中实现强大的性能。我们基准测试基线GNN和Graph Transformer网络,以验证捕获长期依赖性的模型在这些任务上的性能明显更好。因此,这些数据集适用于旨在捕获LRI的MP-GNN和Graph Transformer架构的基准测试和探索。
translated by 谷歌翻译
我们介绍了一个大规模实验,该实验对编码器进行了预处理,其参数计数范围从700m到9.3b不等,随后蒸馏到较小的型号中,范围为17m-170亿参数,其应用到自然语言理解(NLU)组件(NLU)组件(虚拟助手系统。尽管我们使用70%的口语数据训练,但在对书面形式的跨语性自然语言推论(XNLI)语料库进行评估时,我们的教师模型与XLM-R和MT5相当。我们使用系统中的内域数据对教师模型进行了第二阶段的训练,以提高了3.86%的相对分类,而相对7.01%的插槽填充。我们发现,即使是从我们的2阶段教师模型中提取的170亿参数模型,与仅接受公共数据的2.3B参数老师相比,与2.3B参数老师相比,意图分类更好2.88%,并且7.69%的插槽填充错误率更好(第1阶段),强调了。内域数据对训练的重要性。当使用标记的NLU数据进行离线评估时,我们的17m参数阶段2蒸馏模型的表现分别优于XLM-R碱基(85m Params)和Distillbert(42m Params),分别优于4.23%至6.14%。最后,我们介绍了一个完整的虚拟助手实验平台的结果,在该平台中,我们发现使用经过预训练和蒸馏管道训练的模型超过了从8500万参数教师蒸馏的模型,在自动测量全系统用户不满的自动测量中,从8500万参数教师蒸馏出3.74%-4.91%。
translated by 谷歌翻译