Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
Boll Weevil(Anthonomus Grandis L.)是一种严重的害虫,主要以棉花为食。由于亚热带气候条件,在德克萨斯州的下里奥格兰德山谷等地方,棉花植物可以全年生长,因此,收获期间上一个季节的剩下的种子可以在玉米中的旋转中继续生长(Zea Mays L.)和高粱(高粱双色L.)。这些野性或志愿棉花(VC)植物到达Pinhead平方阶段(5-6叶阶段)可以充当Boll Weevil Pest的宿主。得克萨斯州的鲍尔象鼻虫根除计划(TBWEP)雇用人们在道路或田野侧面生长的风险投资和消除旋转作物的田间生长,但在田野中生长的植物仍未被发现。在本文中,我们证明了基于您的计算机视觉(CV)算法的应用,仅在三个不同的生长阶段(V3,V6)(V3,V6)中检测出在玉米场中生长的VC植物,以检测在玉米场中生长的VC植物的应用。使用无人飞机系统(UAS)遥感图像。使用Yolov5(S,M,L和X)的所有四个变体,并根据分类精度,平均平均精度(MAP)和F1得分进行比较。发现Yolov5s可以在玉米的V6阶段检测到最大分类精度为98%,地图为96.3%,而Yolov5s和Yolov5m的地图为96.3%,而Yolov5m的分类精度为85%,Yolov5m和Yolov5m的分类准确性最小,而Yolov5L的分类精度最少。在VT阶段,在尺寸416 x 416像素的图像上为86.5%。开发的CV算法有可能有效地检测和定位在玉米场中间生长的VC植物,并加快TBWEP的管理方面。
translated by 谷歌翻译
为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新感染,目前的志愿棉花(VC)(VC)(gossypium hirsutum L.)植物检测玉米(Zea Mays L.)和Sorghum等旋转作物中的植物检测(高粱双色L.)涉及在田野边缘的手动田地侦察。这导致许多风险植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以充当鲍尔维尔虫害的宿主。因此,需要检测,定位,然后精确地用化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和伽马校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位在康沃尔场的流苏中间(VT)生长阶段生长的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%,分类精度为78%,大小为1207 x 923像素的分类精度为78%,平均推理速度在NVIDIA上的平均推理速度接近47帧(FPS) NVIDIA JETSON TX2 GPU上的Tesla P100 GPU-16GB和0.4 fps。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测和缓解为了有效地管理鲍尔象鼻虫害虫。
translated by 谷歌翻译
自1800年代后期从墨西哥进入美国以来,棉花象鼻虫是Anthonomus Grandis Boheman是美国棉花行业的严重害虫,其损失超过160亿美元。这种害虫几乎被根除了。但是,得克萨斯州南部仍然面临这个问题,由于其亚热带气候可以全年生长,因此每年始终容易恢复有害生物。一旦到达销售虫(玉米),一旦它们到达销售虫的植物,志愿棉花(VC)植物一旦到达销子,可以作为这些害虫的宿主,一旦它们到达销钉头阶段(5-6叶阶段),因此需要检测到,位于,位于,位置,并被摧毁或喷涂。在本文中,我们介绍了一项研究,用于使用Yolov3在无人飞机系统(UAS)收集的三个频段航空图像上检测玉米田中的VC植物。本文的两倍目标是:(i)确定Yolov3是否可以使用UAS和(II)收集的RGB(红色,绿色和蓝色)在玉米场中进行VC检测来研究行为基于平均精度(AP),平均平均精度(MAP)和95%的95%的图像(320 x 320,s1; 416 x 416,s2; 416 x 416,s2;和512 x 512,s3像素)的图像上的yolov3的图像。信心水平。在三个量表之间,MAP没有显着差异,而S1和S3之间的AP存在显着差异(P = 0.04),S2和S3(P = 0.02)。 S2和S3之间的F1分数也存在显着差异(P = 0.02)。在所有三个量表上,MAP缺乏显着差异表明,训练有素的Yolov3模型可用于基于计算机视觉的远程试验的航空应用系统(RPAA),以实时实时实时进行VC检测和喷雾应用。
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences. Fair ML has largely focused on the protection of single attributes in the simpler setting where both attributes and target outcomes are binary. However, the practical application in many a real-world problem entails the simultaneous protection of multiple sensitive attributes, which are often not simply binary, but continuous or categorical. To address this more challenging task, we introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces. This leads to two practical tools: first, the FairCOCCO Score, a normalised metric that can quantify fairness in settings with single or multiple sensitive attributes of arbitrary type; and second, a subsequent regularisation term that can be incorporated into arbitrary learning objectives to obtain fair predictors. These contributions address crucial gaps in the algorithmic fairness literature, and we empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
translated by 谷歌翻译
在许多情况下,有必要通过观察时间序列监视复杂的系统,并确定何时发生异源事件,以便采取相关的动作。确定当前的观察是否异常是具有挑战性的。它需要从历史数据中学习动力学的外推性概率模型,并使用有限数量的当前观察结果来进行分类。我们利用长期概率预测的最新进展,即{\ em Deep概率Koopman},构建了一种在多维时序数据中对异常进行分类的通用方法。我们还展示了如何利用具有域知识的模型来减少I型和II型错误。我们展示了我们提出的关于全球大气污染监测的重要现实世界任务的方法,并将其与NASA的全球地球系统模型集成在一起。该系统成功地检测到由于COVID-19锁定和野火等事件而导致的空气质量异常情况。
translated by 谷歌翻译
拟议的控制方法使用基于自适应的馈电控制器来为CDPR建立一个被动输入输出映射,该映射与线性不变的严格阳性真实反馈控制器一起使用,以确保稳健的闭环输入输出稳定性和渐进式姿势轨迹通过消极定理跟踪。所提出的控制器的新颖性是其配方用于一系列有效载荷态度参数化,包括任何无约束的态度参数化,四元组或方向余弦矩阵(DCM)。通过用刚性和柔性电缆的CDPR进行数值模拟,证明了所提出的控制器的性能和鲁棒性。结果证明了仔细定义CDPR的姿势误差的重要性,CDPR的姿势误差是在使用Quaternion和dcm时以乘法方式执行的,并且在使用不受约束的态度参数时(例如Euler-andle-angle序列)时以特定的添加剂方式执行。
translated by 谷歌翻译