随着受限制的量子计算机逐渐成为现实,寻找有意义的第一应用程序会加剧。在该领域中,较为研究的方法之一是使用一种特殊类型的量子电路(一种所谓的量子神经网络)作为机器学习模型的基础。顾名思义,粗略地说,量子神经网络可以与神经网络发挥相似的作用。但是,专门针对机器学习环境中的应用,对合适的电路体系结构或模型超参数的了解知之甚少。在这项工作中,我们将功能性方差分析框架应用于量子神经网络,以分析哪些超参数对其预测性能最大。我们分析了最常用的量子神经网络架构之一。然后,我们将其应用于OpenML-CC18分类基准中的$ 7 $开源数据集,其功能的数量足够小,足以适合量子硬件,少于$ 20 $ QUBITS。从功能方差分析获得的超参数的排名中检测到了三个主要重要性。我们的实验都证实了预期的模式,并揭示了新的见解。例如,在所有数据集上的边际贡献方面,设定学习率是最关键的超级参数,而所使用的纠缠门的特定选择被认为是最不重要的选择。这项工作介绍了研究量子机学习模型的新方法,并为量子模型选择提供了新的见解。
translated by 谷歌翻译
普通交叉验证(CV)等方法,如k倍交叉验证或Monte-Carlo交叉验证估计学习者的预测性能,通过重复在给定数据的大部分数据和对剩余数据上测试的大部分中进行训练。这些技术有两个主要缺点。首先,它们可以在大型数据集上不必要地慢。其次,除了估计最终性能之外,它们几乎没有进入验证算法的学习过程中的见解。在本文中,我们提出了一种基于学习曲线(LCCV)的验证的新方法。 LCCV迭代地增加用于训练的实例数量而不是创建火车测试分裂。在模型选择的背景下,它丢弃了不太可能成为竞争的模型。我们在从自动化基准测试的67个数据集上运行大规模的实验,并经验显示使用LCCV超过90%的案例,导致使用5/10倍的CV相似的性能(最多1.5%)。然而,它平均产生超过20%的大量运行时间减少。此外,它提供了重要的见解,例如允许评估获取更多数据的益处。这些结果与Automl领域的其他进步正交。
translated by 谷歌翻译
机器学习研究取决于客观解释,可比和可重复的算法基准。我们倡导使用策划,全面套房的机器学习任务,以标准化基准的设置,执行和报告。我们通过帮助创建和利用这些基准套件的软件工具来实现这一目标。这些无缝集成到OpenML平台中,并通过Python,Java和R. OpenML基准套件(A)的接口访问,易于使用标准化的数据格式,API和客户端库; (b)附带的数据集具有广泛的元信息; (c)允许在未来的研究中共享和重复使用基准。然后,我们为分类提供了一个仔细的策划和实用的基准测试套件:OpenML策划分类基准测试套件2018(OpenML-CC18)。最后,我们讨论了使用案例和应用程序,这些案例和应用程序尤其展示了OpenML基准套件和OpenML-CC18的有用性。
translated by 谷歌翻译
Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and collaborate with others to tackle harder problems. We discuss how OpenML relates to other examples of networked science and what benefits it brings for machine learning research, individual scientists, as well as students and practitioners.
translated by 谷歌翻译
尽管深度神经网络能够在各种任务上实现优于人类的表现,但他们臭名昭著,因为他们需要大量的数据和计算资源,将其成功限制在可用的这些资源的领域。金属学习方法可以通过从相关任务中转移知识来解决此问题,从而减少学习新任务所需的数据和计算资源的数量。我们组织了元数据竞赛系列,该系列为世界各地的研究小组提供了创建和实验评估实际问题的新元学习解决方案的机会。在本文中,我们在竞争组织者和排名最高的参与者之间进行了合作,我们描述了竞争的设计,数据集,最佳实验结果以及Neurips 2021挑战中最高的方法,这些方法吸引了15进入最后阶段的活跃团队(通过表现优于基线),在反馈阶段进行了100多次代码提交。顶级参与者的解决方案是开源的。汲取的经验教训包括学习良好的表示对于有效的转移学习至关重要。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
在学习到等级的问题中,特权功能是在模型培训期间可用的功能,但在测试时不可用。这种特征自然出现在商品推荐系统中;例如,“用户单击此项目”作为功能可预测离线数据中的“用户购买此项目”,但在线服务期间显然不可用。特权功能的另一个来源是那些太昂贵而无法在线计算但可行的功能。特权功能蒸馏(PFD)是指自然想法:使用所有功能(包括特权的)训练“老师”模型,然后使用它来训练不使用特权功能的“学生”模型。在本文中,我们首先在经验上研究了三个公共排名数据集和从亚马逊日志中得出的工业规模排名问题。我们表明,PFD在所有这些数据集上都超过了几个基线(无缩写,预处理,自我验证和广义蒸馏)。接下来,我们通过经验消融研究和线性模型的理论分析来分析PFD的原因和何时表现良好。两项研究都发现了一个有趣的非主持酮行为:随着特权特征的预测能力增加,最初的学生模型的性能最初会增加,但随后降低。我们表明了后来的表现降低的原因是,一个非常预测的特权教师会产生较高的差异的预测,从而导致较高的差异学生估计和劣等测试表现。
translated by 谷歌翻译
对抗性补丁攻击是现实世界深度学习应用程序的新兴安全威胁。我们提出了戴定的平滑,这是第一种(符合我们的知识),以证明语义分割模型与此威胁模型的鲁棒性。以前关于防御补丁攻击的辩护的工作主要集中在图像分类任务上,并且经常需要更改模型体系结构和其他培训,而这些培训是不受欢迎且计算上昂贵的。在被删除的平滑度中,可以在没有特定培训,微调或限制体系结构的情况下应用任何分割模型。使用不同的掩盖策略,可以将拔掉的平滑措施应用于认证检测和认证恢复。在广泛的实验中,我们表明,在检测任务中,平均可以证明1%补丁的像素预测的64%,而在ADE20K数据集中恢复任务的0.5%贴片为48%。
translated by 谷歌翻译
对网络规模数据进行培训可能需要几个月的时间。但是,在已经学习或不可学习的冗余和嘈杂点上浪费了很多计算和时间。为了加速训练,我们引入了可减少的持有损失选择(Rho-loss),这是一种简单但原则上的技术,它大致选择了这些训练点,最大程度地减少了模型的概括损失。结果,Rho-loss减轻了现有数据选择方法的弱点:优化文献中的技术通常选择“硬损失”(例如,高损失),但是这种点通常是嘈杂的(不可学习)或更少的任务与任务相关。相反,课程学习优先考虑“简单”的积分,但是一旦学习,就不必对这些要点进行培训。相比之下,Rho-Loss选择了可以学习的点,值得学习的,尚未学习。与先前的艺术相比,Rho-loss火车的步骤要少得多,可以提高准确性,并加快对广泛的数据集,超参数和体系结构(MLP,CNNS和BERT)的培训。在大型Web绑带图像数据集服装1M上,与统一的数据改组相比,步骤少18倍,最终精度的速度少2%。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译