配子等合作驾驶系统,依靠沟通和信息交换,为每个特工创造情境感知。因此,控制部件的设计和性能与通信部件性能紧密耦合。车辆之间的信息流可以显着影响排的动态。因此,排列的性能和稳定性不仅取决于车辆的控制器,还取决于信息流拓扑(IFT)。 IFT可能导致某些排特性的限制,即稳定性和可扩展性。蜂窝载体 - 一切(C-V2X)已成为支持连接和自动化车辆应用的主要通信技术之一。由于数据包丢失,无线通道会创建随机链路中断和网络拓扑的变化。在本文中,我们使用一阶马尔可夫模型模拟车辆之间的通信链路,以捕获每个链路的普遍时间相关性。这些模型通过在系统设计阶段期间的通信链路更好地近似来实现性能评估。我们的方法是使用实​​验中的数据来使用马尔可夫链的分组间隙(IPG)和连续IPG状态的过渡概率矩阵来模拟分组间隙(IPG)。使用基于各种不同车辆密度和通信率的经验数据来源的模型从高保真模拟中收集训练数据。利用IPG模型,我们分析了一家车辆的平均方形稳定性,标准共识协议调整了理想的通信,并比较不同情景的性能下降。
translated by 谷歌翻译
合作驾驶依赖于车辆之间的沟通来造成情境感知。合作驾驶的一种应用是合作自适应巡航控制(CACC),其旨在提高公路运输安全性和能力。基于模型的通信(MBC)是一种新的范例,具有灵活的内容结构,用于广播联合车辆驱动程序预测行为模型。车辆复杂的动态和多样化的驾驶行为为建模过程增加了复杂性。高斯过程(GP)是一种完全数据驱动和非参数贝叶斯建模方法,可用作MBC的建模组件。通过为车辆产生本地GPS并将其超参数作为模型作为模型作为模型来向相邻车辆广播的知识来传播关于不确定性的知识。在该研究中,GP用于模拟每个车辆的速度轨迹,这允许车辆在通信损耗和/或低速率通信期间访问其前车辆的未来行为。此外,为了克服车辆排中的安全问题,考虑了每辆车的两种操作模式;免费下面和紧急制动。本文介绍了离散混合随机模型预测控制,该模型采用了系统模式以及GP模型捕获的不确定性。该拟议的控制设计方法找到了最佳的车速轨迹,其目的是实现具有小型车间隙的安全和有效的车辆,同时降低车辆对频繁通信的依赖性。模拟研究表明,考虑到具有低利率间歇性通信的上述通信范例的提出控制器的功效。
translated by 谷歌翻译
Classification using supervised learning requires annotating a large amount of classes-balanced data for model training and testing. This has practically limited the scope of applications with supervised learning, in particular deep learning. To address the issues associated with limited and imbalanced data, this paper introduces a sample-efficient co-supervised learning paradigm (SEC-CGAN), in which a conditional generative adversarial network (CGAN) is trained alongside the classifier and supplements semantics-conditioned, confidence-aware synthesized examples to the annotated data during the training process. In this setting, the CGAN not only serves as a co-supervisor but also provides complementary quality examples to aid the classifier training in an end-to-end fashion. Experiments demonstrate that the proposed SEC-CGAN outperforms the external classifier GAN (EC-GAN) and a baseline ResNet-18 classifier. For the comparison, all classifiers in above methods adopt the ResNet-18 architecture as the backbone. Particularly, for the Street View House Numbers dataset, using the 5% of training data, a test accuracy of 90.26% is achieved by SEC-CGAN as opposed to 88.59% by EC-GAN and 87.17% by the baseline classifier; for the highway image dataset, using the 10% of training data, a test accuracy of 98.27% is achieved by SEC-CGAN, compared to 97.84% by EC-GAN and 95.52% by the baseline classifier.
translated by 谷歌翻译
National Association of Securities Dealers Automated Quotations(NASDAQ) is an American stock exchange based. It is one of the most valuable stock economic indices in the world and is located in New York City \cite{pagano2008quality}. The volatility of the stock market and the influence of economic indicators such as crude oil, gold, and the dollar in the stock market, and NASDAQ shares are also affected and have a volatile and chaotic nature \cite{firouzjaee2022lstm}.In this article, we have examined the effect of oil, dollar, gold, and the volatility of the stock market in the economic market, and then we have also examined the effect of these indicators on NASDAQ stocks. Then we started to analyze the impact of the feedback on the past prices of NASDAQ stocks and its impact on the current price. Using PCA and Linear Regression algorithm, we have designed an optimal dynamic learning experience for modeling these stocks. The results obtained from the quantitative analysis are consistent with the results of the qualitative analysis of economic studies, and the modeling done with the optimal dynamic experience of machine learning justifies the current price of NASDAQ shares.
translated by 谷歌翻译
Recent advances in language modeling have enabled new conversational systems. In particular, it is often desirable for people to make choices among specified options when using such systems. We address the problem of reference resolution, when people use natural expressions to choose between real world entities. For example, given the choice `Should we make a Simnel cake or a Pandan cake?' a natural response from a non-expert may be indirect: `let's make the green one'. Reference resolution has been little studied with natural expressions, thus robustly understanding such language has large potential for improving naturalness in dialog, recommendation, and search systems. We create AltEntities (Alternative Entities), a new public dataset of entity pairs and utterances, and develop models for the disambiguation problem. Consisting of 42K indirect referring expressions across three domains, it enables for the first time the study of how large language models can be adapted to this task. We find they achieve 82%-87% accuracy in realistic settings, which while reasonable also invites further advances.
translated by 谷歌翻译
Light guide plates are essential optical components widely used in a diverse range of applications ranging from medical lighting fixtures to back-lit TV displays. In this work, we introduce a fully-integrated, high-throughput, high-performance deep learning-driven workflow for light guide plate surface visual quality inspection (VQI) tailored for real-world manufacturing environments. To enable automated VQI on the edge computing within the fully-integrated VQI system, a highly compact deep anti-aliased attention condenser neural network (which we name LightDefectNet) tailored specifically for light guide plate surface defect detection in resource-constrained scenarios was created via machine-driven design exploration with computational and "best-practices" constraints as well as L_1 paired classification discrepancy loss. Experiments show that LightDetectNet achieves a detection accuracy of ~98.2% on the LGPSDD benchmark while having just 770K parameters (~33X and ~6.9X lower than ResNet-50 and EfficientNet-B0, respectively) and ~93M FLOPs (~88X and ~8.4X lower than ResNet-50 and EfficientNet-B0, respectively) and ~8.8X faster inference speed than EfficientNet-B0 on an embedded ARM processor. As such, the proposed deep learning-driven workflow, integrated with the aforementioned LightDefectNet neural network, is highly suited for high-throughput, high-performance light plate surface VQI within real-world manufacturing environments.
translated by 谷歌翻译
WSD (Word Sense Disambiguation) is the task of identifying which sense of a word is meant in a sentence or other segment of text. Researchers have worked on this task (e.g. Pustejovsky, 2002) for years but it's still a challenging one even for SOTA (state-of-the-art) LMs (language models). The new dataset, TempoWiC introduced by Loureiro et al. (2022b) focuses on the fact that words change over time. Their best baseline achieves 70.33% macro-F1. In this work, we use two different losses simultaneously to train RoBERTa-based classification models. We also improve our model by using another similar dataset to generalize better. Our best configuration beats their best baseline by 4.23% and reaches 74.56% macroF1.
translated by 谷歌翻译
Covid-19是一种攻击上呼吸道和肺部的新型病毒。它的人对人的传播性非常迅速,这在个人生活的各个方面都引起了严重的问题。尽管一些感染的人可能仍然完全无症状,但经常被目睹有轻度至重度症状。除此之外,全球成千上万的死亡案件表明,检测Covid-19是社区的紧急需求。实际上,这是在筛选医学图像(例如计算机断层扫描(CT)和X射线图像)的帮助下进行的。但是,繁琐的临床程序和大量的每日病例对医生构成了巨大挑战。基于深度学习的方法在广泛的医疗任务中表现出了巨大的潜力。结果,我们引入了一种基于变压器的方法,用于使用紧凑卷积变压器(CCT)自动从X射线图像中自动检测COVID-19。我们的广泛实验证明了该方法的疗效,精度为98%,比以前的作品表现优于先前的作品。
translated by 谷歌翻译
不平衡的数据(ID)是阻止机器学习(ML)模型以实现令人满意的结果的问题。 ID是一种情况,即属于一个类别的样本的数量超过另一个类别的情况,这使此类模型学习过程偏向多数类。近年来,为了解决这个问题,已经提出了几种解决方案,该解决方案选择合成为少数族裔类生成新数据,或者减少平衡数据的多数类的数量。因此,在本文中,我们研究了基于深神经网络(DNN)和卷积神经网络(CNN)的方法的有效性,并与各种众所周知的不平衡数据解决方案混合,这意味着过采样和降采样。为了评估我们的方法,我们使用了龙骨,乳腺癌和Z-Alizadeh Sani数据集。为了获得可靠的结果,我们通过随机洗牌的数据分布进行了100次实验。分类结果表明,混合的合成少数族裔过采样技术(SMOTE) - 正态化-CNN优于在24个不平衡数据集上达到99.08%精度的不同方法。因此,提出的混合模型可以应用于其他实际数据集上的不平衡算法分类问题。
translated by 谷歌翻译
许多基本的低级优化问题,例如矩阵完成,相位同步/检索,功率系统状态估计和鲁棒PCA,可以作为矩阵传感问题提出。求解基质传感的两种主要方法是基于半决赛编程(SDP)和Burer-Monteiro(B-M)分解的。 SDP方法患有高计算和空间复杂性,而B-M方法可能由于问题的非跨性别而返回伪造解决方案。这些方法成功的现有理论保证导致了类似的保守条件,这可能错误地表明这些方法具有可比性的性能。在本文中,我们阐明了这两种方法之间的一些主要差异。首先,我们提出一类结构化矩阵完成问题,而B-M方法则以压倒性的概率失败,而SDP方法正常工作。其次,我们确定了B-M方法工作和SDP方法失败的一类高度稀疏矩阵完成问题。第三,我们证明,尽管B-M方法与未知解决方案的等级无关,但SDP方法的成功与解决方案的等级相关,并随着等级的增加而提高。与现有的文献主要集中在SDP和B-M工作的矩阵传感实例上,本文为每种方法的独特优点提供了与替代方法的唯一优点。
translated by 谷歌翻译