In recent years, there have been abundant researches focused on indoor human presence detection based on laborious supervised learning (SL) and channel state information (CSI). These existing studies adopt spatial information of CSI to improve detection accuracy. However, channel is susceptible to arbitrary environmental changes in practice, such as the object movement, atmospheric factors and machine rebooting, which leads to degraded prediction accuracy. However, the existing SL-based methods require to re-train a new model with time-consuming labeling. Therefore, designing a semi-supervised learning (SSL) based scheme by continuously monitoring model "life-cycle" becomes compellingly imperative. In this paper, we propose bifold teacher-student (BTS) learning for presence detection system, which combines SSL by utilizing partial labeled and unlabeled dataset. The proposed primal-dual teacher-student network is capable of intelligently learning spatial and temporal features from labeled and unlabeled CSI. Additionally, the enhanced penalized loss function leveraging entropy and distance measure can distinguish the drifted data, i.e., features of new dataset are affected by time-varying effect and are alternated from the original distribution. The experimental results demonstrate that the proposed BTS system can sustain the asymptotic accuracy after retraining the model with unlabeled data. Moreover, label-free BTS outperforms the existing SSL-based models in terms of the highest detection accuracy, while achieving the similar performance of SL-based methods.
translated by 谷歌翻译