视觉搜索是一项普遍存在的,通常挑战日常任务,是通过寻找家中的汽车钥匙或在人群中的朋友。一些经典搜索任务的有趣性属性是一种不对称性,使得在分散的人B中找到目标A可以比找到A中的B.为了阐明对视觉搜索中的不对称负责的机制,我们提出了一种占据目标的计算模型和将搜索图像作为输入,并在找到目标之前产生一系列眼睛移动。该模型将偏心依赖性视觉识别与目标相关的自上而下的提示集成在一起。我们将六种范式搜索任务中的人类行为与人类显示不对称的案式进行比较。如果没有先前接触刺激或任务特定的培训,则该模型提供了搜索不对称的合理机制。我们假设搜索不对称的极性来自自然环境的经验。我们通过培训模型在想象中的增强版本的模型进行测试,其中自然图像的偏差被移除或逆转。根据训练协议,搜索不对称的极性消失或被改变。本研究强调了神经网络模型可以出现古典感知特性如何,而无需特定于任务培训,而是由于馈送到模型的发育饮食的统计特性。所有源代码和数据都在https://github.com/kreimanlab/visualsearchaseSearmmetry上公开使用。
translated by 谷歌翻译
学习在无人驾驶汽车(UAV)捕获的图像中检测物体(例如人类)通常会遭受无人机对物体的位置造成的巨大变化。此外,现有的基于无人机的基准数据集不提供足够的数据集元数据,这对于精确的模型诊断至关重要,并且学习功能不变。在本文中,我们介绍了大天使,这是第一个基于无人机的对象检测数据集,该数据集由具有相似想象条件以及无人机位置以及对象姿势元数据捕获的真实和合成子集组成。一系列实验经过精心设计,使用最先进的对象检测器设计,以证明在模型评估过程中利用元数据的好处。此外,还提供了几种涉及模型微调过程中涉及真实和合成数据的关键见解。最后,我们讨论了有关大天使的优势,局限性和未来方向,以突出其对更广泛的机器学习社区的独特价值。
translated by 谷歌翻译
关于自适应梯度方法等自适应梯度方法等训练动力的知之甚少。在本文中,我们阐明了这些算法在全批处理和足够大的批处理设置中的行为。具体而言,我们从经验上证明,在全批训练中,预处理的Hessian的最大特征值通常在某个数值下平衡 - 梯度下降算法的稳定性阈值。对于带有步长$ \ eta $和$ \ beta_1 = 0.9 $的Adam,此稳定性阈值为$ 38/\ eta $。在Minibatch培训期间发生了类似的影响,尤其是随着批处理大小的增长。然而,即使自适应方法在``稳定性的自适应边缘''(AEOS)上训练,但它们在该制度中的行为与EOS的非自适应方法的行为有很大不同。 EOS处的非自适应算法被阻止进入损失景观的高曲率区域,而AEOS的自适应梯度方法可以继续前进到高外观区域,同时适应预先调节器以补偿。我们的发现可以成为社区对深度学习中适应性梯度方法的未来理解的基础。
translated by 谷歌翻译
通过一系列联邦举措和命令,美国政府一直在努力确保美国在AI中的领导。这些广泛的战略文件影响了美国空军美国部(DAF)等组织。DAF-MIT AI加速器是DAF和MIT之间的一项计划,以弥合AI研究人员与DAF任务要求之间的差距。DAF-MIT AI加速器支持的几个项目正在开发公共挑战问题,这些问题解决了许多联邦AI研究的重点。这些挑战是通过公开可用的大型AI-Ready数据集,激励开源解决方案,并为可以激发进一步研究的双重使用技术创建需求信号,来针对优先事项。在本文中,我们描述了正在开发的这些公共挑战以及它们的应用如何促进科学进步。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
由于它们对运动模糊和在弱光和高动态范围条件下的高度鲁棒性的韧性,事件摄像机有望成为对未来火星直升机任务的基于视觉探索的传感器。但是,现有的基于事件的视觉惯性进程(VIO)算法要么患有高跟踪误差,要么是脆弱的,因为它们无法应对由于无法预料的跟踪损失或其他效果而导致的显着深度不确定性。在这项工作中,我们介绍了EKLT-VIO,该工作通过将基于事件的最新前端与基于过滤器的后端相结合来解决这两种限制。这使得不确定性的准确和强大,超过了基于事件和基于框架的VIO算法在挑战性基准上的算法32%。此外,我们在悬停的条件(胜过现有事件的方法)以及新近收集的类似火星和高动态范围的新序列中表现出准确的性能,而现有的基于框架的方法失败了。在此过程中,我们表明基于事件的VIO是基于视觉的火星探索的前进道路。
translated by 谷歌翻译
对于大型小分子的大型库,在考虑一系列疾病模型,测定条件和剂量范围时,详尽的组合化学筛选变得不可行。深度学习模型已实现了硅的最终技术,以预测协同得分。但是,药物组合的数据库对协同剂有偏见,这些结果不一定会概括分布不足。我们采用了使用深度学习模型的顺序模型优化搜索来快速发现与癌细胞系相比的协同药物组合,而与详尽的评估相比,筛查要少得多。在仅3轮ML引导的体外实验(包括校准圆圈)之后,我们发现,对高度协同组合进行了查询的一组药物对。进行了另外两轮ML引导实验,以确保趋势的可重复性。值得注意的是,我们重新发现药物组合后来证实将在临床试验中研究。此外,我们发现仅使用结构信息生成的药物嵌入开始反映作用机理。
translated by 谷歌翻译
我们提出了一种质量感知的多模式识别框架,其将来自多个生物特征的表示与不同的质量和样本数量相结合,以通过基于样本的质量提取互补识别信息来实现增加的识别准确性。我们通过使用以弱监督时尚估计的质量分数加权,为融合输入方式的质量意识框架,以融合输入方式的融合。此框架利用两个融合块,每个融合块由一组质量感知和聚合网络表示。除了架构修改外,我们还提出了两种特定于任务特定的损耗功能:多模式可分离性损失和多模式紧凑性损失。第一个损失确保了类的模态的表示具有可比的大小来提供更好的质量估计,而不同类别的多式数代表分布以实现嵌入空间中的最大判别。第二次丢失,被认为是正规化网络权重,通过规范框架来提高泛化性能。我们通过考虑由面部,虹膜和指纹方式组成的三个多模式数据集来评估性能。通过与最先进的算法进行比较来证明框架的功效。特别是,我们的框架优于BioMdata的模式的级别和得分级别融合超过30%以获得$ 10 ^ { - 4} $ 10 ^ { - 4} $的真正验收率。
translated by 谷歌翻译
在本文中,我们考虑了面部变形攻击的挑战,这大大破坏了面部识别系统的完整性,例如在边境保护机构中采用的那些。变形检测可以制定为提取细粒度的表示,其中利用局部鉴别特征来学习假设。为了在不同的粒度和去耦的光谱信息中获取辨别特征,我们利用小波域分析来深入了解变形面的空间频率含量。这样,而不是使用RGB域中的图像,我们使用2D小波分解将每个图像分解为其小波子频带,并且采用深度监督特征选择方案来查找输入图像的最辨别的小波子带。为此,我们使用变形和真绒图像的分解小波子带训练深度神经网络(DNN)变形探测器。在训练阶段,我们的结构群稀疏受约束的DNN从所有子带中选择了最多的鉴别性小波子带,我们恢复了我们的DNN,导致在探测器上实现了推理时的变形图像的精确检测图片。通过结构化组套索增强的深形变形探测器的功效通过三个面部变形图像数据库,即Visapp17,LMA和摩根进行了验证了通过实验验证。
translated by 谷歌翻译
变形是为了创建一个包含无论是个人的特点一个新的身份在图像中两个或多个学科相结合的过程。演变图像可以骗过面部识别系统(FRS)为虚假接受多人,导致国家安全故障。由于演变图像合成变得更容易,至关重要的是要研究界的可用数据扩展,以协助打击这种困境。在本文中,我们探索的两种方法音素变形图像生成,这些几何变换(翘曲和混合以产生变形的图像)和光度扰动组合。我们利用这两种方法来从FERET,FRGC和FRLL数据集高品质adversarially扰动变种。最终图像保留高相似两个输入受试者从而在视觉域最小伪像一段时间。图像通过融合来自两个外观类似主题小波子带合成,然后adversarially扰乱创建高度说服力的形象欺骗人类和深变形探测器。
translated by 谷歌翻译