视觉搜索是一项普遍存在的,通常挑战日常任务,是通过寻找家中的汽车钥匙或在人群中的朋友。一些经典搜索任务的有趣性属性是一种不对称性,使得在分散的人B中找到目标A可以比找到A中的B.为了阐明对视觉搜索中的不对称负责的机制,我们提出了一种占据目标的计算模型和将搜索图像作为输入,并在找到目标之前产生一系列眼睛移动。该模型将偏心依赖性视觉识别与目标相关的自上而下的提示集成在一起。我们将六种范式搜索任务中的人类行为与人类显示不对称的案式进行比较。如果没有先前接触刺激或任务特定的培训,则该模型提供了搜索不对称的合理机制。我们假设搜索不对称的极性来自自然环境的经验。我们通过培训模型在想象中的增强版本的模型进行测试,其中自然图像的偏差被移除或逆转。根据训练协议,搜索不对称的极性消失或被改变。本研究强调了神经网络模型可以出现古典感知特性如何,而无需特定于任务培训,而是由于馈送到模型的发育饮食的统计特性。所有源代码和数据都在https://github.com/kreimanlab/visualsearchaseSearmmetry上公开使用。
translated by 谷歌翻译