The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Performance of spoken language understanding (SLU) can be degraded with automatic speech recognition (ASR) errors. We propose a novel approach to improve SLU robustness by randomly corrupting clean training text with an ASR error simulator, followed by self-correcting the errors and minimizing the target classification loss in a joint manner. In the proposed error simulator, we leverage confusion networks generated from an ASR decoder without human transcriptions to generate a variety of error patterns for model training. We evaluate our approach on the DSTC10 challenge targeted for knowledge-grounded task-oriented conversational dialogues with ASR errors. Experimental results show the effectiveness of our proposed approach, boosting the knowledge-seeking turn detection (KTD) F1 significantly from 0.9433 to 0.9904. Knowledge cluster classification is boosted from 0.7924 to 0.9333 in Recall@1. After knowledge document re-ranking, our approach shows significant improvement in all knowledge selection metrics, from 0.7358 to 0.7806 in Recall@1, from 0.8301 to 0.9333 in Recall@5, and from 0.7798 to 0.8460 in MRR@5 on the test set. In the recent DSTC10 evaluation, our approach demonstrates significant improvement in knowledge selection, boosting Recall@1 from 0.495 to 0.7144 compared to the official baseline. Our source code is released in GitHub https://github.com/yctam/dstc10_track2_task2.git.
translated by 谷歌翻译
对于许多下游任务(例如,情感分析,关系检测等),脑电图(EEG)和语言已被广泛探索。研究这两个领域的多模式方法尚未得到很好的探索,即使近年来,多模式学习被认为比单峰对应物更强大。在这项研究中,我们希望探索脑电图与语言之间的关系和依赖性,即一个领域如何反映和代表另一个领域。为了研究表示级别的关系,我们引入了MTAM(一种多模式变压器对准模型),以观察两种模式之间的协调表示,因此采用了转换表示来进行下游应用。我们使用各种关系对齐的寻求对准技术,例如规范相关性分析和Wasserstein距离,作为转化低级语言的损失函数,并将EEG特征转化为高级转化的特征。在下游应用程序,情感分析和关系检测上,我们在两个数据集(Zuco和k-emocon)上实现了新的最新结果。我们的方法在K-Emocon的情感分析中获得了16.5%的F1得分提高,对Zuco的情感分析的26.6%,以及对Zuco的关系检测的31.1%。此外,我们通过以下方式提供对性能改进的解释:(1)可视化原始特征分布和变换的特征分布,显示对齐模块发现和编码脑电图与语言之间的关系的有效性; (2)可视化单词级别和句子级的脑电图对齐权重,显示不同语言语义和脑电图频率特征的影响; (3)可视化大脑地形图,以提供有关大脑区域中脑电图和语言反应的连通性的直观演示。
translated by 谷歌翻译
最近,已经提出了许多有效的变压器,以降低由软磁性注意引起的标准变压器的二次计算复杂性。但是,他们中的大多数只是用有效的注意机制交换SoftMax,而无需考虑定制的体系结构,特别是为了有效的关注。在本文中,我们认为手工制作的香草变压器体系结构可用于软马克斯的注意力可能不适合有效的变压器。为了解决这个问题,我们提出了一个新框架,通过神经体系结构搜索(NAS)技术找到有效变压器的最佳体系结构。提出的方法在流行的机器翻译和图像分类任务上进行了验证。我们观察到,与标准变压器相比,有效变压器的最佳体系结构的计算降低,但总体准确性较低。这表明SoftMax的注意力和有效的注意力具有自己的区别,但它们都无法同时平衡准确性和效率。这激发了我们混合两种注意力以减少性能失衡。除了现有NAS变压器方法中常用的搜索空间外,我们还提出了一个新的搜索空间,该空间允许NAS算法与架构一起自动搜索注意变体。 WMT'EN-DE和CIFAR-10上的广泛实验表明,我们的搜索架构与标准变压器保持了可比的精度,并具有明显提高的计算效率。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
Context-aware decision support in the operating room can foster surgical safety and efficiency by leveraging real-time feedback from surgical workflow analysis. Most existing works recognize surgical activities at a coarse-grained level, such as phases, steps or events, leaving out fine-grained interaction details about the surgical activity; yet those are needed for more helpful AI assistance in the operating room. Recognizing surgical actions as triplets of <instrument, verb, target> combination delivers comprehensive details about the activities taking place in surgical videos. This paper presents CholecTriplet2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos. The challenge granted private access to the large-scale CholecT50 dataset, which is annotated with action triplet information. In this paper, we present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge. A total of 4 baseline methods from the challenge organizers and 19 new deep learning algorithms by competing teams are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%. This study also analyzes the significance of the results obtained by the presented approaches, performs a thorough methodological comparison between them, in-depth result analysis, and proposes a novel ensemble method for enhanced recognition. Our analysis shows that surgical workflow analysis is not yet solved, and also highlights interesting directions for future research on fine-grained surgical activity recognition which is of utmost importance for the development of AI in surgery.
translated by 谷歌翻译
神经文本生成模型,如用于总结和翻译的那些模型产生高质量的输出,但是当我们真正想要的是一个不同的选项时,通常会集中在模式周围。我们介绍了一个搜索算法来构建编码大量生成选项的格子。首先,我们将解码重组为最佳搜索,该搜索探讨了与光束搜索不同的空间,并通过避免修剪路径来提高效率。其次,我们重新审视假设重组的想法:我们可以在搜索期间识别类似的生成候选者,并将它们合并为近似。在摘要和机器翻译中,我们表明我们的算法编码了数百到数千个不同的选项,这些选项保持语法和高质量成一个线性型格子。该算法为在大规模不同输出之上构建下游生成应用提供了基础。
translated by 谷歌翻译
以数据为中心的AI最近被证明更有效和高性能,而传统的以模式为中心的AI提供更少且更少的福利。它强调提高数据集的质量,以实现更好的模型性能。由于其巨大的实用性和越来越多,这一领域具有重要潜力。然而,我们在这一领域没有看到显着的研究进展,特别是在NLP中。我们提出DatacLue,它是第一个在NLP字段中应用的数据中心基准。我们还提供三个简单但有效的基线,以促进该领域的研究(改善宏F1高达5.7%的点)。此外,我们与人类注释者进行全面的实验,并显示了Dataclue的硬度。我们还尝试高级方法:忘记通知的引导标签校正方法。与Datacleue相关的所有资源,包括DataSet,Toolkit,排行榜和Baselines,可在Https://github.com/cluebenchmark/dataclue在线提供
translated by 谷歌翻译
我们提出了一种新颖的形状意识的关系网络,用于内窥镜粘膜颌下粘膜释放(ESD)手术中的准确和实时地标检测。这项任务具有很大的临床意义,但由于复杂的手术环境中出血,照明反射和运动模糊而极其挑战。与现有解决方案相比,通过使用复杂的聚合方案忽略靶向对象之间的几何关系或捕获关系,所提出的网络能够实现令人满意的精度,同时通过充分利用地标之间的空间关系来保持实时性能。我们首先设计一种算法来自动生成关系关键点热量表,其能够直观地代表地标之间的空间关系的先验知识,而无需使用任何额外的手动注释工作。然后,我们开发两个互补正规计划,以逐步将先验知识纳入培训过程。虽然一个方案通过多任务学习引入像素级正则化,但另一个方案通过利用新设计的分组的一致性评估器来实现全局级正则化,该评估将关系约束以越野方式添加到所提出的网络。这两个方案都有利于训练模型,并且可以随时推动才能卸载,以实现实时检测。我们建立了一个大型内部数据集的ESD手术,用于食管癌,以验证我们提出的方法的有效性。广泛的实验结果表明,我们的方法在准确性和效率方面优于最先进的方法,更快地实现了更好的检测结果。在两个下游应用的有希望的结果进一步证实了我们在ESD临床实践中的方法的巨大潜力。
translated by 谷歌翻译
Learning effective motion features is an essential pursuit of video representation learning. This paper presents a simple yet effective sample construction strategy to boost the learning of motion features in video contrastive learning. The proposed method, dubbed Motion-focused Quadruple Construction (MoQuad), augments the instance discrimination by meticulously disturbing the appearance and motion of both the positive and negative samples to create a quadruple for each video instance, such that the model is encouraged to exploit motion information. Unlike recent approaches that create extra auxiliary tasks for learning motion features or apply explicit temporal modelling, our method keeps the simple and clean contrastive learning paradigm (i.e.,SimCLR) without multi-task learning or extra modelling. In addition, we design two extra training strategies by analyzing initial MoQuad experiments. By simply applying MoQuad to SimCLR, extensive experiments show that we achieve superior performance on downstream tasks compared to the state of the arts. Notably, on the UCF-101 action recognition task, we achieve 93.7% accuracy after pre-training the model on Kinetics-400 for only 200 epochs, surpassing various previous methods
translated by 谷歌翻译