Recently, many deep learning based beamformers have been proposed for multi-channel speech separation. Nevertheless, most of them rely on extra cues known in advance, such as speaker feature, face image or directional information. In this paper, we propose an end-to-end beamforming network for direction guided speech separation given merely the mixture signal, namely MIMO-DBnet. Specifically, we design a multi-channel input and multiple outputs architecture to predict the direction-of-arrival based embeddings and beamforming weights for each source. The precisely estimated directional embedding provides quite effective spatial discrimination guidance for the neural beamformer to offset the effect of phase wrapping, thus allowing more accurate reconstruction of two sources' speech signals. Experiments show that our proposed MIMO-DBnet not only achieves a comprehensive decent improvement compared to baseline systems, but also maintain the performance on high frequency bands when phase wrapping occurs.
translated by 谷歌翻译
最近基于神经网络的到达方向(DOA)估计算法在未知数的声源场景上表现良好。这些算法通常是通过将多通道音频输入映射到单个输出(即所有来源的总空间伪谱(SP))来实现的,称为MISO。但是,这种误语算法在很大程度上取决于经验阈值设置和声音源之间的角度大于固定角度的角度假设。为了解决这些局限性,我们提出了一种新型的多通道输入和多个输出的DOA网络,称为MIMO-DOANET。与一般的误觉算法不同,Mimo-Doanet借助于信息的空间协方差矩阵预测了每个声源的SPS编码。通过这样做,检测声源数量的阈值任务成为检测每个输出中是否存在声音源的更容易的任务,并且在推理阶段,声源之间的严重交互消失。实验结果表明,与3,4个来源场景中的莫斯科基线相比,MIMO-DOANET的相对增长18.6%和绝对13.3%,相对34.4%和绝对20.2%的F1得分提高。结果还证明了Mimo-Doanet减轻了阈值设置问题,并有效地解决了角度假设问题。
translated by 谷歌翻译
双重编码器结构成功地利用了两个特定语言的编码器(LSE)进行代码转换语音识别。由于LSE由两个预训练的语言特定模型(LSM)初始化,因此双编码器结构可以利用足够的单语言数据并捕获单个语言属性。但是,现有方法对LSE的语言没有限制,并且不足以针对LSM的语言知识。在本文中,我们提出了一种特定语言的特征辅助(LSCA)方法来减轻上述问题。具体来说,在培训期间,我们引入了两种特定语言的损失作为语言限制,并为其生成相应的语言目标。在解码过程中,我们通过组合两个LSM和混合模型的输出概率来考虑LSM的解码能力,以获得最终预测。实验表明,LSCA的训练或解码方法可以改善模型的性能。此外,通过组合LSCA的训练和解码方法,最佳结果可以在代码切换测试集上获得多达15.4%的相对误差。此外,该系统可以通过使用我们的方法来很好地处理代码转换语音识别任务,而无需额外的共享参数,甚至可以基于两个预训练的LSM进行重新训练。
translated by 谷歌翻译
声源本地化旨在从观察到的多通道音频寻求所有声源的到达方向(DOA)。对于未知数量来源的实际问题,现有的本地化算法试图预测基于似然的编码(即空间频谱),并采用预先确定的阈值来检测源编号和相应的DOA值。但是,这些基于阈值的算法不稳定,因为它们受到仔细选择阈值的限制。为了解决此问题,我们提出了一种称为ISSL的迭代声源本地化方法,该方法可以迭代地提取每个源的DOA而无需阈值,直到满足终止标准为止。与基于阈值的算法不同,ISSL设计基于二进制分类器的活动源检测器网络,以接受残留的空间频谱并决定是否停止迭代。通过这样做,我们的ISSL可以处理任意数量的来源,甚至超过培训阶段中看到的来源数量。实验结果表明,与现有的基于阈值的算法相比,我们的ISSL在DOA估计和源数检测方面都取得了重大的性能提高。
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
Traffic accident prediction in driving videos aims to provide an early warning of the accident occurrence, and supports the decision making of safe driving systems. Previous works usually concentrate on the spatial-temporal correlation of object-level context, while they do not fit the inherent long-tailed data distribution well and are vulnerable to severe environmental change. In this work, we propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training. In particular, the text description provides a dense semantic description guidance for the primary context of the traffic scene, while the driver attention provides a traction to focus on the critical region closely correlating with safe driving. CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module. We leverage the attention mechanism in these modules to explore the core semantic cues for accident prediction. In order to train CAP, we extend an existing self-collected DADA-2000 dataset (with annotated driver attention for each frame) with further factual text descriptions for the visual observations before the accidents. Besides, we construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames (named as CAP-DATA) together with labeled fact-effect-reason-introspection description and temporal accident frame label. Based on extensive experiments, the superiority of CAP is validated compared with state-of-the-art approaches. The code, CAP-DATA, and all results will be released in \url{https://github.com/JWFanggit/LOTVS-CAP}.
translated by 谷歌翻译
Sequential recommendation is an important task to predict the next-item to access based on a sequence of interacted items. Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items. However, we observe that the time interval in a sequence may vary significantly different, and thus result in the ineffectiveness of user modeling due to the issue of \emph{preference drift}. In fact, we conducted an empirical study to validate this observation, and found that a sequence with uniformly distributed time interval (denoted as uniform sequence) is more beneficial for performance improvement than that with greatly varying time interval. Therefore, we propose to augment sequence data from the perspective of time interval, which is not studied in the literature. Specifically, we design five operators (Ti-Crop, Ti-Reorder, Ti-Mask, Ti-Substitute, Ti-Insert) to transform the original non-uniform sequence to uniform sequence with the consideration of variance of time intervals. Then, we devise a control strategy to execute data augmentation on item sequences in different lengths. Finally, we implement these improvements on a state-of-the-art model CoSeRec and validate our approach on four real datasets. The experimental results show that our approach reaches significantly better performance than the other 11 competing methods. Our implementation is available: https://github.com/KingGugu/TiCoSeRec.
translated by 谷歌翻译
Current work in named entity recognition (NER) uses either cross entropy (CE) or conditional random fields (CRF) as the objective/loss functions to optimize the underlying NER model. Both of these traditional objective functions for the NER problem generally produce adequate performance when the data distribution is balanced and there are sufficient annotated training examples. But since NER is inherently an imbalanced tagging problem, the model performance under the low-resource settings could suffer using these standard objective functions. Based on recent advances in area under the ROC curve (AUC) maximization, we propose to optimize the NER model by maximizing the AUC score. We give evidence that by simply combining two binary-classifiers that maximize the AUC score, significant performance improvement over traditional loss functions is achieved under low-resource NER settings. We also conduct extensive experiments to demonstrate the advantages of our method under the low-resource and highly-imbalanced data distribution settings. To the best of our knowledge, this is the first work that brings AUC maximization to the NER setting. Furthermore, we show that our method is agnostic to different types of NER embeddings, models and domains. The code to replicate this work will be provided upon request.
translated by 谷歌翻译
Generalist models, which are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model, have been explored recently. Being, hopefully, an alternative to approaching general-purpose AI, existing generalist models are still at an early stage, where modality and task coverage is limited. To empower multi-modal task-scaling and speed up this line of research, we release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction. At the core of OFASys is the idea of decoupling multi-modal task representations from the underlying model implementations. In OFASys, a task involving multiple modalities can be defined declaratively even with just a single line of code. The system automatically generates task plans from such instructions for training and inference. It also facilitates multi-task training for diverse multi-modal workloads. As a starting point, we provide presets of 7 different modalities and 23 highly-diverse example tasks in OFASys, with which we also develop a first-in-kind, single model, OFA+, that can handle text, image, speech, video, and motion data. The single OFA+ model achieves 95% performance in average with only 16% parameters of 15 task-finetuned models, showcasing the performance reliability of multi-modal task-scaling provided by OFASys. Available at https://github.com/OFA-Sys/OFASys
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译